Icebergs and ice ridges frequently scour the surface of seabed deposits. Ice scouring can be problematic for offshore pipelines and other seabed installations. In order to reduce the risk of failure, pipelines are buried in the seabed. However, a stationary or moving ice feature could cause a significant increase in stresses and deformation in the seabed soil deposits below the contact surface between the soil and the ice, and consequently, might result in structural failure of buried pipeline. Safe burial depth for pipelines has been the subject of both experimental and numerical studies. In this paper, two and three dimensional analyses are conducted using PLAXIS and ADINA. In these analyses, geometric and material nonlinearities are considered. In order to establish the validity of the finite element calculations, the experimental results reported in the literature and the numerical results obtained in the present study are compared. The emphasis is placed on determining the importance of (1) using interface elements between different materials such as soil and ice, soil and pipelines; (2) using the soil model correctly, and (3) using a three dimensional analysis rather than a two dimensional analysis. The changes taking placed in the deformation pattern and the stress states in the seabed soils resulting from ice scouring are determined. The effects of pipeline burial depth, the shape of the ice feature, and the characteristics of seabed soils on the stresses acting on the pipeline are evaluated.

This content is only available via PDF.
You do not currently have access to this content.