This paper reviews available static strength data and presents results of finite element analyses on first crack loads and ultimate loads of X-joints in tension. A critique of existing guidance for such joints is given. An examination of hot spot stress for such joints is presented, together with new capacity formulations based on test data. The new formulations are verified with reference to new data from a finite element analysis. The new capacity formulations will be of interest to regulatory authorities, to designers of new offshore installations and to engineers carrying out assessments of existing structures. It is also expected that the formulations will be considered by code drafting committees, e.g. for API RP2A, ISO 19902 and NORSOK, during code revisions. The paper demonstrates that present guidance is unduly conservative in two respects: (1) high γ joints (i.e. thin-walled chords) in the range 0.7 ≤ β ≤ 0.9 joints (i.e. moderately high brace/chord diameter ratios), and (2) joints with β = 1.0 having low γ. However, it is shown that present guidance may be optimistic for low γ joints with β < 0.9. The new capacity formulations proposed in this paper correct these deficiencies. As one example, the new formulations give an increase of 60% in capacity compared to existing guidance for a joint with β = 1.0 and γ = 10, not untypical of many joints in service. In the near term, the paper may be most appreciated by those involved with structural integrity assessment studies. There have been some recent examples where existing guidance has indicated that some primary structural joints are under-strength. This has prompted extensive numerical work to prove the adequacy of the joints. A worst case scenario would be the implementation of unnecessary offshore strengthening work.

This content is only available via PDF.
You do not currently have access to this content.