Nonlinear response of piles is the most important source of potentially nonlinear behavior of offshore platforms due to earthquake excitations. It is often necessary to perform dynamic analysis of offshore platforms that accounts for soil nonlinearity, discontinuity condition at pile soil interfaces, energy dissipation through soil radiation damping and structural nonlinear behaviors of the piles. Incremental dynamic analysis is an analysis method that has recently emerged as a promising tool for thoroughly evaluating the seismic performance of structures. It involves subjecting a structural model to a suite of ground motion records, each scaled to several intensities and recording the responses at each level to form IDA curves of response versus intensity. In this paper, jacket and soil-pile system is modeled and the effects of Soil-Pile-Structure Interaction (SPSI) are considered, and the Incremental Dynamic Analysis (IDA) is used to investigate nonlinear behavior of offshore platforms. An attempt is made to introduce a practical BNWF (Beam on Nonlinear Winkler Foundation) model for estimating the lateral response of flexible piles embedded in layered soil deposits subjected to seismic loading. This model was incorporated into a Finite Element program (OpenSees). All the analyses are performed in two directions and the results are compared with each others. A computer program for Nonlinear Earthquake site Response Analyses of layered soil deposits (NERA) is used for analysis nonlinear response of soil layers. Limit state of the jacket is calculated from incremental dynamic analysis of the jacket using fiber elements for the nonlinear modeling of the system.

This content is only available via PDF.
You do not currently have access to this content.