A code for simulating hydrodynamic interaction forces in manoeuvring simulating systems has been created. The algorithm takes into account potential forces only and is based on the Hess and Smith panel method. Own inertial hydrodynamic forces were estimated through pre-calculation of the added masses followed by use of the Thomson–Tait–Kirchhoff equations. Comparative computations of the added masses, surge and sway interaction forces and yaw interaction moments with varying number of surface computational panels showed that on a typical modern PC, an acceptable accuracy in terms of the integrated loads can be reached with a relatively small number of panels permitting real-time simulations with the developed algorithm in the loop. Importance of the account for the local time derivative of the potential has been demonstrated on comparative calculations in simulation of a passing-by manoeuvre. The code can be used for predicting interaction loads with any number of moving objects and fixed obstacles.

This content is only available via PDF.
You do not currently have access to this content.