In this paper, a fully nonlinear numerical wave tank model has been used to simulate the propagation of fully nonlinear waves in different water depths. In the numerical wave tank model, the fully nonlinear dynamic and kinematic free-surface boundary conditions have been applied and the boundary integral equation (BIE) solution to the Laplacian problem has been obtained using the Mixed Eulerian-Lagrangian (MEL) approach. The model solution has been verified through the comparison with the available experimental data. A convergence and accuracy study has been carried out to examine the time stepping scheme and the required mesh density. The nonlinearity effects were evident in the solution by the asymmetrical wave profile around both vertical and horizontal axis along with sharp high crests and broad flat troughs. Fully nonlinear wave propagation in deepwater, in transition zone and in shallow water has been simulated. The nonlinear solution has been compared to the linear solution for various waves. Shoaling coefficient and wave-number have been derived based on the nonlinear solution and compared to the linear theory solution for various wave characteristics.

This content is only available via PDF.
You do not currently have access to this content.