Aquaculture is the fastest growing food producing sector in the world. Considerable interest exists in developing open ocean aquaculture in response to a shortage of suitable, sheltered inshore locations. The harsh weather conditions experienced offshore lead to a focus on new structure concepts, remote monitoring and a higher degree of automation in order to keep the cost of structures and operations within an economically viable range. This paper proposes tensegrity structures in the design of flexible structures for offshore aquaculture. The finite element analysis program ABAQUS™ has been used to investigate stiffness properties and performance of tensegrity structures when subjected to various forced deformations and hydrodynamic load conditions. The suggested concept, the tensegrity beam, shows promising stiffness properties in tension, compression and bending, which are relevant for development of open ocean aquaculture construction for high energy environments. When designing a tensegrity beam, both pre-stress and spring stiffness should be considered to ensure the desired structural properties. A large strength to mass ratio and promising properties with respect to control of geometry, stiffness and vibration could make tensegrity an enabling technology for future developments.

This content is only available via PDF.
You do not currently have access to this content.