Recently, the phenomenon of out-of-plane bending (OPB) fatigue of mooring chain links emerged as an important parameter in the fatigue assessment of mooring lines. Vessel motions induce a bending moment at the top chain of a mooring line. This bending moment induces alternating local stresses in the link and thus contributes to fatigue damage of those links. High pretension mooring systems are particularly sensitive to this phenomenon, since a small vessel motion combined with a high tension results in a relatively large bending moment in the upper mooring chain links. In mooring systems with high pre-tensions, this damage is of much greater magnitude than the fatigue damage induced by tension-tension loading only. An extensive study has been executed to investigate the fatigue life of mooring chain in deep water systems. This paper presents the calculation procedure to include the effects of local chain bending in the overall mooring line fatigue analysis. It was concluded that despite the complexity of the OPB issue, it is a phenomenon that can be incorporated in the mooring analyses by means of numerical procedures. The developed method is based on extensive Finite Element Method (FEM) analyses of chain links. Models of multiple chain links have been used that take into account the plastic-elastic properties of the material and contact friction between chain links. The FE models are used to derive empirical relations, between load angles, interlink angles, bending moments and stresses. These calculations were made for different combinations of line tension, interlink friction and chain size. The results were stored in a database to gain insight in the out-of-plane bending phenomenon. This database provides empirical formulas to lead to the local stress in different points on a chain link. These empirical formulas are used to translate floater (vessel or buoy) motions into local stress variations and fatigue damages in chain links. The long-term motion behaviour of the floater is known, the long term tension and bending stress ranges can be obtained and thus a fatigue damage of the chain links can be calculated.

This content is only available via PDF.
You do not currently have access to this content.