This work presents a numerical study on the synchronization regime of a single cylinder subject to forced harmonic motion in the transverse direction of the flow. The study is carried out for a circular cylinder for Reynolds number around 500. The forced harmonic amplitude to diameter ratio is 0.22 and the forced frequency varies from 0.2 to 4.8 Hz. The Navier-Stokes equations are solved in a non-staggered grid using a sixth-order compact difference schemes to evaluate the spatial derivatives, a low-storage third-order Runge-Kutta scheme for time integration. The cylinder is represented using a feedback force methodology. The results are compared with experimental data obtained in a water tunnel. Results show clearly that synchronization phenomenon in the fundamental frequency as well as to its super and sub-harmonics.

This content is only available via PDF.
You do not currently have access to this content.