The paper presents results from an experimental investigation of hydrodynamic forces on a cylinder under forced in-line motions. Measured forces are decomposed into added mass, driving force and average drag components. From a large set of experiments it has been possible to draw a complete map for in-line force coefficients as function of arbitrary combinations of motion amplitude and frequency. The paper presents test set-up, data processing and how the coefficients can be used in an empirical force coefficient model for calculation of in-line vibrations of slender marine structures with arbitrary damping. Such analyses are in particular important for free spanning pipelines, where damping from pipe/seafloor interaction will reduce the response amplitudes and hence also stresses and fatigue damage.

This content is only available via PDF.
You do not currently have access to this content.