Engineering Criticality Assessment (ECA) is a procedure based on fracture mechanics that may be used to supplement the traditional S-N approach and determine the flaw acceptance and inspection criteria in fatigue and fracture design of risers and flowlines. A number of design codes provide guidance for this procedure, e.g. BS-7910:2005 [1]. However, more investigations and example studies are still needed to address the design implications for riser and flowline applications. This paper provides a review of the existing ECA methodology, presents a fracture mechanics design method for a wide range of riser and flowline fatigue problems, and shows flaw size results from steel catenary riser (SCR) and flowline (FL) examples. The first example is a deepwater SCR subjected to fatigue loads due to vessel motion and riser VIV. The second example is a subsea flowline subjected to thermal fatigue loads. The effects of crack re-characterization and material plasticity on the Level-2 and Level-3 ECA results of the SCR and flowline examples are illustrated.

This content is only available via PDF.
You do not currently have access to this content.