A state of the art windows graphical user interface (GUI) program has been developed to predict and design the bottom-hole assembly (BHA) performance for drilling. The techniques and algorithms developed in the program are based upon those developed by Lubinski and Williamson. The BHA program facilitates in conducting parametric studies, and in making field decisions for optimal performance. The input parameters may include: formation class, dip angle, hole size, drill collar size, number of stabilizers, stabilizer spacing. The program takes into consideration bit-formation characteristics and interaction, drill collar sizes, square collars, shock absorbers, MWD tools, reamer tools, directional tools, rotary steerable systems etc. The output may consist of hole curvature (build up or drop rate), hole angle, weight on bit and is presented in drilling semantics. Additionally, the program can perform mechanical analyses and solve for the bending moments and reactions forces. Moreover, the program has the capability to predict the wellpath using a drill ahead algorithm. The program consists of a mathematical model which makes assumptions of 2-D, static, constant hole curvature resulting in a robust computationally efficient tool that produces rapid reliable results in the field.

This content is only available via PDF.
You do not currently have access to this content.