Fixed offshore platforms or Jacket type platforms are the most common offshore structures used for oil & gas Exploration & Production industry in Persian Gulf, because water depth is such that the shallow water condition is dominant. Sea waves as dominant environmental loading are cyclic and have random nature. The applied cyclic sea wave forces will lead to fatigue damages in jacket’s joints. There are different methods to investigate the fatigue life of jackets such as deterministic method, simplified method, spectral method and transient method. Spectral method is a suitable method, which can consider the random nature of sea waves in fatigue analysis. Deterministic-spectral method developed by Bishop et al. is used to estimate the fatigue life of shallow water jacket platforms. However, in this method the frequency spectrum of waves is used in the analysis, but generally sea waves are propagating in different directions with different frequencies, so directional wave spectrum can consider wave randomness more properly. In this paper, frequency domain spectral method using Deterministic-Spectral approach has been used to estimate the fatigue life of a typical jacket platform (SPD1 at South Pars Field - Persian Gulf). Base wave cases were chosen from joint histogram of height & period that is calculated based on scatter diagrams of South Pars Field. First the jacket was modeled by ANSYS software, then by applying base wave cases to it and analyzing the critical TT joint under internal cyclic forces, hot spot stress transfer functions at 8 nodes around the intersection of joint were obtained. Using JONSWAP standard spectrum and the spreading function proposed by Goda, sea state’s Power Spectral Densities (PSD) and directional spectrums are multiplied to obtain stress spectra. The fatigue damage and fatigue life then are calculated. Results indicate that the fatigue life based on frequency spectrum is less than the fatigue life based on directional spectrum.
Skip Nav Destination
ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering
June 10–15, 2007
San Diego, California, USA
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
Volume 1: Offshore Technology; Special Symposium on Ocean Measurements and Their Influence on Design
ISBN:
0-7918-4267-3
PROCEEDINGS PAPER
Deterministic-Spectral Fatigue Analysis of a Typical Jacket Platform (SPD1) Using Directional Wave Spectrum
M. Azimirad,
M. Azimirad
Sahand University of Technology, Tabriz, East Azarbaijan, Iran
Search for other works by this author on:
A. R. M. Gharabaghi,
A. R. M. Gharabaghi
Sahand University of Technology, Tabriz, East Azarbaijan, Iran
Search for other works by this author on:
M. R. Chenaghlou
M. R. Chenaghlou
Sahand University of Technology, Tabriz, East Azarbaijan, Iran
Search for other works by this author on:
M. Azimirad
Sahand University of Technology, Tabriz, East Azarbaijan, Iran
A. R. M. Gharabaghi
Sahand University of Technology, Tabriz, East Azarbaijan, Iran
M. R. Chenaghlou
Sahand University of Technology, Tabriz, East Azarbaijan, Iran
Paper No:
OMAE2007-29418, pp. 527-534; 8 pages
Published Online:
May 20, 2009
Citation
Azimirad, M, Gharabaghi, ARM, & Chenaghlou, MR. "Deterministic-Spectral Fatigue Analysis of a Typical Jacket Platform (SPD1) Using Directional Wave Spectrum." Proceedings of the ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. Volume 1: Offshore Technology; Special Symposium on Ocean Measurements and Their Influence on Design. San Diego, California, USA. June 10–15, 2007. pp. 527-534. ASME. https://doi.org/10.1115/OMAE2007-29418
Download citation file:
18
Views
Related Articles
Fatigue Analysis of Offshore Structures
J. Energy Resour. Technol (December,1979)
Profiles of Two JOMAE Associate Editors (A Continuing Series)
J. Offshore Mech. Arct. Eng (October,2021)
Spectral Fatigue Analysis of Shallow Water Jacket
Platforms
J. Offshore Mech. Arct. Eng (August,1996)
Related Chapters
Common Compliant Platforms
Offshore Compliant Platforms: Analysis, Design, and Experimental Studies
ISO 19901-1 Petroleum and Natural Gas Industries — Specific Requirements for Offshore Structures — Part 1: Metocean Design and Operating Considerations
Ageing and Life Extension of Offshore Facilities