The prediction of deepwater riser Vortex Induced Vibrations (VIV) is one of the most challenging areas in the offshore industry. Numerous experimental and numerical studies have been performed in an effort to improve the understanding and prediction of cylinder VIV behavior. This paper presents the numerical simulation of rigid circular sections, both bare and fitted with strakes, using a second order accurate finite element computational fluid dynamics (CFD) method. Two turbulence models are examined: the Spalart-Allmaras Reynolds Averaged Navier Stokes (RANS) and the Detached Eddy Simulation (DES). Pragmatic high Reynolds number simulations of fixed and moving cylinders are presented and compared with laboratory experiments. Flow visualization provides insights on how strakes mitigate VIV. Comparisons between RANS and DES results are also presented and discussed.

This content is only available via PDF.
You do not currently have access to this content.