Numerical simulations of Vortex Induced Vibration have been failing to duplicate accurately experimental data mostly due to the complexity of the physics involved in the real problem. Therefore, a careful and comprehensive investigation on CFD algorithms is still required to indicate the most suitable numerical scheme to handle such a complicate problem. Grid generation, boundary condition implementation, and coupling between the fluid flow governing equations and body motion equation are known to have strong influence on the qualities of the numerical results. This work presents results obtained from a long-term investigation featuring different CFD methods. The investigations enabled the selection of a very effective algorithm that showed an outstanding agreement between experiment and numerical simulation of the VIV phenomenon. Good agreement is obtained in the entire range of reduced velocity covered by the experimental investigations. The successful algorithm discussed here applies the Beam and Warming implicit scheme to solve the two-dimensional slightly compressible Navier–Stokes equations with the K-ε turbulence model to simulate the turbulent flow at the wake of the cylinder.

This content is only available via PDF.
You do not currently have access to this content.