In this paper, the nonlinear dynamic response and buckling of damaged composite pipes under radial impact is investigated. A model involving initial geometric deformation, delamination and sub-layer matrix damage is set up for theoretical analysis. Based on the first order shear deformation theory, the nonlinear dynamic equations of the composite pipe considering transverse shear deformation and initial geometric imperfections are obtained by Hamilton’s theory and solved by a semi-analytical finite difference method. The effects of damage on the dynamic response and buckling of composite pipes are discussed.

This content is only available via PDF.
You do not currently have access to this content.