The development of deep water gas fields using trunklines to carry the gas to the markets is sometime limited by the feasibility/economics of the construction phase. In particular there is a market for using S-lay vessels in water depth larger than 1000m. The S-lay feasibility depends on the applicable tension at the tensioner which is a function of water depth, stinger length and stinger curvature (for given stinger length by its curvature). This means that, without major vessel up-grading and to avoid too long stingers that are prone to damages caused by environmental loads, the application of larger stinger curvatures than presently allowed by current regulations/state of the art is needed. The work presented in this paper is a result of the project “Development of a Design Guideline for Submarine Pipeline Installation” sponsored by STATOIL and HYDRO. The technical activities are performed in co-operation by DNV, STATOIL and SNAMPROGETTI. The scope of the project is to produce a LRFD (Load Resistant Factor Design) design guideline to be used in the definition and application of design criteria for the laying phase e.g. to S and J-lay methods/equipment. The guideline covers D/t from 15 to 45 and applied strains over the overbend in excess of 0.5%. This paper addresses the failure modes relevant for combined high curvatures/strains, axial, external pressure and local forces due to roller over the stinger of an S-lay vessel and to sea bottom contacts, particularly: • Residual pipe ovality after laying, • Maximum strain and bending moment capacity. Analytical equations are proposed in accordance with DNV OS F101 philosophy and design format.

This content is only available via PDF.
You do not currently have access to this content.