The development of deep water gas fields using trunklines to carry the gas to the markets is sometime limited by the feasibility/economics of the construction phase. In particular there is market for using S-lay vessel in water depth larger than 1000m. The S-lay feasibility depends on the applicable tension at the tensioner which is a function of water depth, stinger length and stinger curvature (for given stinger length by its curvature). This means that, without major vessel up-grading and to avoid too long stingers that are prone to damages caused by environmental loads, the application of larger stinger curvatures than allowed by current regulations/state of the art, is needed. The work presented in this paper is a result of the project “Development of a Design Guideline for Submarine Pipeline Installation” sponsored by STATOIL and HYDRO. The technical activities are performed in co-operation by DNV, STATOIL and SNAMPROGETTI. This paper presents the results of the analysed S-lay scenarios in relation to extended laying ability of medium to large diameter pipelines in order to define the statistical distribution of the relevant load effects, i.e. bending moment and longitudinal strain as per static/functional, dynamic/total, and environmental load effects. The results show that load effects (longitudinal applied strain and bending moment) are strongly influenced by the static setting (applied stinger curvature and axial force at the tensioner in combination with local roller reaction over the stinger). The load effect distributions are the basis for the development of design criteria/safety factors which fulfil a predefined target safety level.

This content is only available via PDF.
You do not currently have access to this content.