This article presents a numerical study for the Petrobras HP-HT pipeline P-53/PRA-1 that will be installed at Marlim Leste field in Campos Basin offshore Brazil. This pipeline will connect P-53 platform in deep-water (1031m) to an Autonomous Platform for Intermediate Pumping (PRA-1) in shallow water (100m). HP-HT pipelines resting on seabed can develop thermal buckling, which is an important concern for the pipeline structural integrity. The aim of this study is to verify the P-53/PRA-1 pipeline behavior during lateral buckling due to thermal cycles and pressure variations, using a new approach for the pipe-soil interaction model in contrast with the traditional Mohr-Coulomb friction model. The pipe-soil interaction model considers soil berms formed due to pipe cyclic displacements, representing different phases of the soil lateral reaction force versus displacement curve: breakout force, suction release, berm formation and residual resistance. The results presented compare the traditional Mohr-Coulomb model with the proposed one for several loads cycles, analyzing displacements, stresses and strains behavior during thermal buckling.

This content is only available via PDF.
You do not currently have access to this content.