Three years ago, several mooring chains of an off-loading buoy failed after only 8 months of service. These chains were designed according to conventional fatigue assessment using API RP 2SK T-N curves to a fatigue life or 20 years with a factor of safety equal to 3 on life. Of particular interest is that the mooring chain failure underwent significant mooring chain motions that caused interlink rotations. Although traditionally neglected, these interlink rotations, when combined with significant chain tensions can cause bending stresses in the chain links (See Figure 1). This recently identified phenomena, Out-of-Plane Bending (OPB), explains the extensive fatigue damage causing the mooring chains of the off-loading buoy to fail [3][4][5]. References [3] and [4] document full scale tests of the OPB mechanism using a full scale test frame with the ability of applying inter-link rotation to a pre-tensioned chain. This testing confirmed that interlink rotations with a constant tension load can result in significantly high stresses. OPB stresses were measured on four different chain sizes of various grades: 1) 81 mm Studded Grade R3S, 2) 107 mm Stud-less Grade RQ3, 3) 124 mm Stud-less Grade R4, and 4) 146 mm Stud-less Grade RQ4, Grade R3 in [3] and [4], but no actual fatigue tests were performed. References [3] and [5] document analytical and computational efforts to explain and quantify the OPB stresses. In this paper, special focus is placed on obtaining actual fatigue failures of chains from OPB loading. Smaller chain sizes (40 mm) are used to accommodate the load limits of the testing frame. To mimic the actual loading as close as possible, sub size models of actual chainhawses were used in the testing. Two chainhawses were used: 1) the chainhawse has internal curvature where a link rests on the intrados, similar to offloading buoy that failed in eight months, and 2) a straight chainhase, a design that is in use today with demonstrated improved fatigue performance over the curved chainhawse. OPB stresses are measured and reported. Fatigue loading in the OPB mode was applied for several configurations. The two chainhawse exhibit very different stress levels and fatigue performance. An empirical relationship previously reported in [3][4][5] is compared to the measured OPB stresses with mixed results. Although limited in number, the fatigue tests indicate that overall the chain fatigue performance is at or above the B1 DnV curve. The BS B1 curve is also compared.

This content is only available via PDF.
You do not currently have access to this content.