The reeling process is one of the most important methods for offshore installations of linepipes. Pipe segments are welded onshore and subsequently bent over a cylindrical rigid surface (reel) in a laying vessel. The pipe is significantly cyclically strained. Due to the high loading condition, the high costs of operations and the severe failure consequences, it is necessary to guarantee the integrity of the components during the process. Conventional defect assessment procedures are not explicitly developed for situations with large cyclic plastic strains. In previous work, a fracture mechanics based methodology was developed to obtain an appropriate specific method to assess the structural reliability of reeled pipes. A description of the material resistance toughness and the crack driving force evolution through strain cycles was proposed. This methodology was experimentally verified. In order to expand this model, in this work the case where several reeling cycles are applied is considered. In addition to the fracture mechanics methodology previously developed, a fatigue crack growth (FCG) formulation controlled by ΔJ parameter was developed. This formulation accounts for the crack growth produced during subsequent reeling cycles. Several fatigue laws and methods to calculate ΔJ were evaluated. An experimental program was carried out. Girth welded joints from two different seamless steel pipes were analyzed. Monotonic and cyclic fracture mechanics tests were performed using single edge notch tension (SENT) specimens. Cyclic tests were used to determine experimentally the cyclic crack growth. Experimental measurements were compared to predicted fatigue crack growths for different ΔJ calculation methods and fatigue laws. Comparison between theoretical and experimental results led to the selection of the most realistic fatigue law. A methodology to assess the reliability of pipes during multiple reeling cycles, based on fracture and elastic-plastic fatigue crack growth, was developed. A particular case of interest was presented, tolerable defect sizes were determined for different number of applied reeling cycles. The proposed methodology seems to be an accurate method to assess cases where multiple plastic cycles are taken into account.

This content is only available via PDF.
You do not currently have access to this content.