Uncertainties that exist in modelling and simulation, design variables and parameters, manufacturing processes etc., may lead to large variations in the performance characteristics of the system. Optimized deterministic designs determined without considering uncertainties can be unreliable and may lead to catastrophic failure of the structure being designed. Reliability based optimization (RBO) is a methodology that addresses these problems. In this paper the reliability based optimization of submarine pressure hulls in which the failure gets governed by inelastic interstiffener buckling has been described. The problem has been formulated to minimize the ratio of weight of shell-stiffener geometry to the weight of liquid displaced, subjected to reliability based inelastic interstiffener buckling constraint. Since the methods of analysis of inelastic buckling failure of submarine pressure hulls are inadequate, in the present study the Johnson-Ostenfeld inelastic correction method has been adopted for formulating the constraint. By considering spacing of the stiffener, thickness of the plating and depth of the stiffener as the design variables, Sequential Unconstrained Minimization Technique (SUMT) has been used to solve the design problem. RBO has been carried out to get the optimal values of these design variables for a target reliability index using Interior Penalty Function Method for which an efficient computer code in C++ has been developed.

This content is only available via PDF.
You do not currently have access to this content.