Global warming, the depletion of conventional energy reserves and the rising cost of electricity generation have sparked renewed interest in renewable wave energy within Canada and internationally. Significant advances in wave energy converters have been made in recent years, and there is a growing realization in many countries, particularly those in Europe, that these technologies will be ready for large scale deployments within the next five to ten years (ABP, 2004). Despite these recent developments, very little effort has been directed to quantifying and mapping wave energy resources in Canada in the past. This paper presents results from a recent study in which the wave energy resource in Canada’s Pacific and Atlantic waters is quantified by analysing a large quantity of data obtained from four sources: direct wave measurements; two wind-wave hindcasts of the North Atlantic; and a single hindcast of the Northeast Pacific. Each data source is described and the methods used to analyse the data sets are explained in detail. The derived wave power estimates, including their seasonal and spatial variability, are presented and discussed. Results obtained from the direct measurements and the wind-wave hindcasts are also compared. The paper also includes a review of the theoretical background required to estimate wave energy. The waters off Canada’s Pacific and Atlantic coasts are endowed with rich wave energy resources. The results presented here define the scale of these resources, as well as their significant spatial and seasonal variations.

This content is only available via PDF.
You do not currently have access to this content.