A Fourier spectrum based model of Gulf of Mexico storm conditions is applied to a 6 degree of freedom analytic simulation of a moored, floating offshore structure fitted with three rotary wind turbines. The resulting heave, surge, and sway motions are calculated using a Newtonian Runge-Kutta method. The angular motions of pitch, roll, and yaw are also calculated in this time-domain progression. The forces due to wind, waves, and mooring line tension are predicted as a function of time over a 4000 second interval. The WAMIT program is used to develop the wave forces on the platform. A constant force coefficient is used to estimate wind turbine loads. A TIMEFLOAT computer code calculates the motion of the system based on the various forces on the structure and the system’s inertia.

This content is only available via PDF.
You do not currently have access to this content.