With the trend towards offshore LNG production and offloading, sloshing of LNG in partially filled tanks has become an important research subject for the offshore industry. LNG sloshing may induce impact pressures on the containment system and may affect the motions of the LNG carrier. So far, LNG sloshing has been studied mainly using model experiments with an oscillation tank. However, the development of Navier-Stokes solvers with a detailed handling of the free surface allows the numerical simulation of sloshing. It should be investigated, however, how accurate the results of this type of simulations are for this complex flow problem. The paper first presents the details of the numerical model, an improved Volume Of Fluid (iVOF) method. The program has been developed initially to study the sloshing of liquid fuel in satellites. Later, the numerical model has been used for calculations of green water loading and the analysis of anti-roll tanks, including the coupling with ship motions. Recently, the model has been extended to incorporate two-phase flow. This extension improves its ability to simulate the effect of gas bubbles of different sizes. Gas bubbles are present in virtually all relevant offshore situations; not only at LNG sloshing but also during green water events, bow slamming and water entry. In a two-phase flow model, both the liquid and the gas phase can have their own continuity and momentum equations. The handling of the compressibility of the gas phase is a major issue in the design of a two-phase flow model. However, as a first step in the modeling process, the gas phase is considered as incompressible. For a dambreak experiment, results of the one-phase model, the incompressible two-phase model and model experiment results have been compared. It is shown that the physics are more accurately simulated with the incompressible two-phase model. Furthermore, the paper will show results of the incompressible model for LNG sloshing. The physics of LNG sloshing and several other applications can be approached better by taking the compressibility into account. Therefore, as a second step, a compressible model is currently under construction, involving adiabatic compression of the gas phase.
Skip Nav Destination
ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering
June 12–17, 2005
Halkidiki, Greece
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
0-7918-4197-9
PROCEEDINGS PAPER
Modeling Two-Phase Flow With Offshore Applications
Rik Wemmenhove,
Rik Wemmenhove
University of Groningen, Groningen, The Netherlands
Search for other works by this author on:
Erwin Loots,
Erwin Loots
University of Groningen, Groningen, The Netherlands
Search for other works by this author on:
Roel Luppes,
Roel Luppes
University of Groningen, Groningen, The Netherlands
Search for other works by this author on:
Arthur E. P. Veldman
Arthur E. P. Veldman
University of Groningen, Groningen, The Netherlands
Search for other works by this author on:
Rik Wemmenhove
University of Groningen, Groningen, The Netherlands
Erwin Loots
University of Groningen, Groningen, The Netherlands
Roel Luppes
University of Groningen, Groningen, The Netherlands
Arthur E. P. Veldman
University of Groningen, Groningen, The Netherlands
Paper No:
OMAE2005-67460, pp. 993-1001; 9 pages
Published Online:
November 11, 2008
Citation
Wemmenhove, R, Loots, E, Luppes, R, & Veldman, AEP. "Modeling Two-Phase Flow With Offshore Applications." Proceedings of the ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering. 24th International Conference on Offshore Mechanics and Arctic Engineering: Volume 3. Halkidiki, Greece. June 12–17, 2005. pp. 993-1001. ASME. https://doi.org/10.1115/OMAE2005-67460
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Simulation of Sloshing in LNG-Tanks
J. Offshore Mech. Arct. Eng (August,2009)
Structural Response to Sloshing Excitation in Membrane LNG Tank
J. Offshore Mech. Arct. Eng (May,2011)
Turbulence and Phase Distribution in Bubbly Pipe Flow Under Microgravity Condition
J. Fluids Eng (December,2002)
Related Chapters
Advances in the Stochastic Modeling of Constitutive Laws at Small and Finite Strains
Advances in Computers and Information in Engineering Research, Volume 2
Evolution of Containment Systems for Gen III Reactors
Containment Structures of U.S. Nuclear Power Plants: Background, Regulations, Codes and Standards, and Other Considerations
Two Decades of Optimism
Air Engines: The History, Science, and Reality of the Perfect Engine