Large eddy simulations were carried out for the flow around a hydrodynamically smooth, fixed circular cylinder at two Reynolds numbers, one at a subcritical Reynolds number (Re = 1.4 × 105) and the other at a supercritical Reynolds number (Re = 1.0 × 106). The computations were made using a parallelized finite-volume Navier-Stokes solver based on a multidimensional linear reconstruction scheme that allows use of unstructured meshes. Central differencing was used for discretization of both convection and diffusion terms. Time-advancement scheme, based on an implicit, non-iterative fractional-step method, was adopted in conjunction with a three-level, backward second-order temporal discretization. Subgrid-scale turbulent viscosity was modeled by a dynamic Smagorinsky model adapted to arbitrary unstructured meshes with the aid of a test-filter applicable to arbitrary unstructured meshes. The present LES results closely reproduced the flow features observed in experiments at both Reynolds numbers. The time-averaged mean drag coefficient, root-mean-square force coefficients and the frequency content of fluctuating forces (vortex-shedding frequency) are predicted with a commendable accuracy.

This content is only available via PDF.
You do not currently have access to this content.