In the last twenty years, experimental tests and FEM-based theoretical studies have been carried out to investigate the buckling mechanisms of thin-walled pipes subject to internal pressure, axial force and bending moment. Unfortunately, these studies do not completely cover the scope relevant for offshore pipelines i.e. outer diameter to thickness ratio lower than 50. In the HotPipe Phase 2 JI Project, full-scale bending tests were performed on pressurized pipes to verify the Finite Element Model predictions from HotPipe Phase 1 of the beneficial effect of internal pressure on the capacity of pipes to undergo large plastic bending deformations without developing local buckling. A total of 4 pipes were tested, the key test parameters being the outer-diameter-to-wall-thickness ratio (seameless pipes with D/t = 25.6, and welded UOE pipes with D/t = 34.2), and the presence of a girth weld in the test section. For comparison a Finite Element Model was developed with shell elements in ABAQUS. The test conditions were matched as closely as possible: this includes the test configuration, the stress-strain curves (i.e. using measured curves as input), and the loading history. The FE results very realistically reproduce the observed failure mechanisms by formation and localization of wrinkles on the compression side of the pipe. Good agreement is also achieved in the moment capacities (with predictions only 2.5 to 8% above measured values), but larger differences arose for the deformation capacity, suggesting that the DNV OS-F101 formulation for the characteristic bending strain (which is based on FE predictions from HotPipe Phase I) may be non-conservative in certain cases.

This content is only available via PDF.
You do not currently have access to this content.