The increased demand for high strength linepipe for onshore and offshore pipeline systems has been well documented over the past few years. The economic benefits have been demonstrated, and solutions have been developed to address the technical issues facing high strength linepipe use. However, there are still a few unanswered questions, one of which is addressed in this paper: what is the effect of thermal treatment during the pipeline coating process on the material behaviour of high strength linepipe? This paper presents the results of a thermal coupon study investigating the effects of low temperature heat treatment on the tensile and compressive stress strain curves of samples taken from X100 linepipe. Thirty axial test coupons and thirty circumferential test coupons were machined from a 52 inch diameter, 21 mm wall thickness UOE X100 linepipe. Some of the coupons were maintained in the as-received condition (no heat treatment) while others were heat-treated in a manner that simulates a coating plant induction heat treatment process. All coupons were subsequently tested in tension or compression, either at room temperature or at −18°C. This study has provided a number of interesting results. In regards to material strength, the heat treatment increased the tensile and compressive yield strengths in the longitudinal and circumferential coupons. Axial tensile, axial compressive and circumferential tensile yield strength increases ranged from 5 to 10%. Circumferential compressive yield strength increases ranged from 14 to 24%. A Y/T ratio increase of approximately 7% was observed for all heat-treated tensile coupons. The coupon tests conducted at −18°C were only slightly different than their room temperature counterparts; with an average yield strength increase of 4% in all directions and orientations and a slight reduction in Y/T ratio.

This content is only available via PDF.
You do not currently have access to this content.