The Radial Friction Welding (RFW) is a solid-state welding process in which two long elements of several metallic alloys can be joined, without the occurrence of common problems to the conventional welding processes that include fusion. During friction welding the temperature evolution is directly related with the deformation gradient, and these fields govern the joint properties. In this work, the finite element method was used to solve the full coupled termomechanical problem in order to determine the deformation and the stress fields and the variation of the temperature during RFW process. The simulation of the RFW process permitted to establish the influence of the welding parameters, like rotation and approximation speed, on the joint quality. Furthermore, the knowledge of the temperature gradient and cooling rates allowed the prediction of the resulting microestruture and determination of the level of residual stresses of the joint. To verify the analytical results the determination of the residual stresses was accomplished by the hole drilling method in several points along the perimeter of two welded workpieces.

This content is only available via PDF.
You do not currently have access to this content.