This paper presents a different approach to the work developed by Cruz and Sarmento (2005), where the same problem was studied in the frequency domain. It concerns the same sphere, connected to the seabed by a tension line (single point moored), that oscillates with respect to the vertical direction in the plane of wave propagation. The pulsating nature of the sphere is the basic physical phenomenon that allows the use of this model as a simulation of a floating wave energy converter. The hydrodynamic coefficients and diffraction forces presented in Linton (1991) and Lopes and Sarmento (2002) for a submerged sphere are used. The equation of motion in the angular direction is solved in the time domain without any assumption about its output, allowing comparisons with the previously obtained results.

This content is only available via PDF.
You do not currently have access to this content.