This paper presents a methodology for reliability analysis of Tension Leg Platform (TLP) tendons subjected to extraordinary sea state conditions like hurricanes or winter storms. A coupled approach in time domain is used to carry out TLP random nonlinear dynamic analysis including wind, current and first and second order wave forces. The tendons Ultimate Limit State (ULS) condition is evaluated by an Interaction Ratio (IR) taking into account dynamic combination among tension, bending and hydrostatic pressure. Expected long-term extreme IR is obtained through the integration of cumulative probability functions (CPFs) fitted to response maxima associated to individual short term sea states. The reliability analysis is performed using a time-integrated scheme including uncertainties in loads, tendon strength, and analytical models. Failure probabilities for the most loaded tendon of a TLP in Campeche Bay, Mexico, considering a 100-yr design sea state and the 100-yr extreme response generated by long-term observed storms are compared.

This content is only available via PDF.
You do not currently have access to this content.