In the present study, non-linear wave loads such as the wave drift force, wave drift damping and wave drift added mass, acting on a moored body is evaluated based on the potential theory. The body is oscillating at a low frequency under the non-linear excitation of waves. The problem of interaction between the low-frequency oscillation of the body and ambient wave fields is considered. A moving coordinate frame following the low frequency motion is adopted. Two small parameters, which measure the wave slope and the frequency of slow oscillations (compared with the wave frequency) respectively, are used in the perturbation analysis. So obtained boundary value problems for each order of potentials are solved by means of the hybrid method. The fluid domain is divided into two regions by an virtual circular cylinder surrounding the body. Different approaches, i.e. boundary element method and eigen-function expansion, are applied to these two regions. Calculated nonlinear wave loads are compared to the semi-analytical results to validate the present method.

This content is only available via PDF.
You do not currently have access to this content.