With the move to the development of remote, deepwater fields, increasing use is being made of floating production, storage and offloading (FPSO) facilities from which oil is intermittently offloaded to a shuttle tanker via offloading lines and an anchor leg mooring buoy. The response of the individual components of these systems is significantly influenced by hydrodynamic and mechanical coupling between adjacent components, precluding the use of traditional analysis techniques such as displacement RAOs derived from tank model tests or diffraction/radiation analyses of the independent components. Consequently, the reliable and accurate design of these complex systems requires an analysis tool capable of determining the fully coupled response of each of the individual components of the system. A recently-developed time domain coupled analysis tool has been extended to incorporate a frequency domain coupled analysis capability. This tool combines radiation/diffraction theory with a non-linear finite element (FE) structural analysis technique used for the analysis of slender offshore structures. This paper describes the application of frequency domain analysis to the coupled FE/floating structure problem, with particular consideration given to the linearisation of viscous drag loads on floating structures and the treatment of low-frequency second-order loads in the frequency domain. Results from frequency domain and time domain coupled analyses of a typical West of Africa type offloading system are compared, highlighting areas of application where frequency domain coupled analysis can offer significant benefits when used in conjunction with time domain analysis. Based on this, recommendations are made for the appropriate use of frequency and time domain coupled analysis for this type of system.

This content is only available via PDF.
You do not currently have access to this content.