Traditional naval architecture analysis of ship survival-ability involves analyzing the vessel righting arm curve in isolation or as compared to a steady wind heeling moment. It is well known that ships do not capsize in calm water and infinite time but do so in rough seas and do so dynamically in short time. Understanding the shortcomings of the traditional approach especially for advanced vessels numerous researchers in the ship dynamics field have proposed an alternative view of ship stability analysis, which involves dynamical analysis. Unfortunately, most ship motions analysis is linear and uses ideal flow theory both of which are inadequate descriptions of large amplitude ship rolling motion. Moreover, much of engineering nonlinear vibrations analysis involves perturbation methods where the nonlinearity is assumed small. Numerical simulation and physical model testing to find this critical behavior is time consuming and expensive. An alternative approach involves directly calculating critical behavior. This approach was originally developed for periodic forcing at a single frequency possibly the linear natural frequency. However, nonlinear resonance is much more complicated than linear resonance and more than a single frequency, multi-valued behavior can occur over a range of frequencies. Moreover, the phenomena which are possible for a nonlinear system are much more varied and diverse. In this paper we will analyze a traditional displacement hull form’s critical response in harmonic waves at the system’s linear natural frequency and compare this to the system’s critical response in random waves. We will compare these responses for different values of damping using these different analysis techniques.
Skip Nav Destination
ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering
June 12–17, 2005
Halkidiki, Greece
Conference Sponsors:
- Ocean, Offshore and Arctic Engineering Division
ISBN:
0-7918-4195-2
PROCEEDINGS PAPER
Combined Steady State and Transient Analysis of a Patrol Vessel as Affected by Varying Amounts of Damping and Periodic and Random Wave Excitation
Jeffrey M. Falzarano,
Jeffrey M. Falzarano
University of New Orleans, New Orleans, LA
Search for other works by this author on:
Srinivas Vishnubhotla,
Srinivas Vishnubhotla
University of New Orleans, New Orleans, LA
Search for other works by this author on:
Sarah E. Juckett
Sarah E. Juckett
University of New Orleans, New Orleans, LA
Search for other works by this author on:
Jeffrey M. Falzarano
University of New Orleans, New Orleans, LA
Srinivas Vishnubhotla
University of New Orleans, New Orleans, LA
Sarah E. Juckett
University of New Orleans, New Orleans, LA
Paper No:
OMAE2005-67578, pp. 1081-1085; 5 pages
Published Online:
November 11, 2008
Citation
Falzarano, JM, Vishnubhotla, S, & Juckett, SE. "Combined Steady State and Transient Analysis of a Patrol Vessel as Affected by Varying Amounts of Damping and Periodic and Random Wave Excitation." Proceedings of the ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering. 24th International Conference on Offshore Mechanics and Arctic Engineering: Volume 1, Parts A and B. Halkidiki, Greece. June 12–17, 2005. pp. 1081-1085. ASME. https://doi.org/10.1115/OMAE2005-67578
Download citation file:
10
Views
Related Proceedings Papers
Related Articles
Designing Against Capsize in Beam Seas: Recent Advances and New Insights
Appl. Mech. Rev (May,1997)
Combined Steady State and Transient Analysis of a Patrol Vessel as Affected by Varying Amounts of Damping and Periodic and Random Wave Excitation
J. Offshore Mech. Arct. Eng (February,2010)
A Numerical Feasibility Study of a Parametric Roll Advance Warning System
J. Offshore Mech. Arct. Eng (August,2007)
Related Chapters
Engineering Design about Electro-Hydraulic Intelligent Control System of Multi Axle Vehicle Suspension
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)
Fluidelastic Instability of Tube Bundles in Single-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment
Stability and Range
Design and Analysis of Centrifugal Compressors