In this paper, the float-off operation of a land-built crude oil tank (COT) loaded out and towed on launching dual-submersible barges is numerically simulated by a time-domain vessel-mooring-riser coupled dynamic analysis program with multiple floating bodies. The study is particularly focused on the maximum load prediction on connectors and the minimum gap prediction between barges and the COT. In case of simpler modeling, the time-domain simulation results are compared with frequency-domain results. Then, the time-domain model is run for more realistic situation with hawsers and mooring line. In hydrodynamic analysis, the interactions among the 3 floating bodies are fully taken into consideration. In the frequency-domain analysis, the connectors between barges are modeled by equivalent translational and rotational springs, the stiffness of which is estimated using Euler’s beam theory. In order to assess the possible occurrence of contact between COT and barges, the relative motions between barges and the COT at several points of interest were investigated.

This content is only available via PDF.
You do not currently have access to this content.