Tethered systems, underwater or otherwise, are nowadays used for very diverse tasks. Due to the complexity of such systems, it is necessary to simulate them for design, operation and training purposes. This paper deals with an approach to simulation of tethered systems, in particular underwater remotely operated vehicles (ROVs), by incorporating contact forces acting between the tether and the environment into the dynamic model of the tether. This will ensure model fidelity when the tethered system is operated in a dense environment. In this paper, methods used to compute contact forces are described. In the calculation of contact dynamics, the distance between the tethered system and the environment is of utmost interest. Algorithms to determine the separation distance between the tether and the environment are discussed in the scope of this work. These algorithms are then incorporated into an existing dynamics model of the ROV tether. Finally, this paper concludes with a simple numerical example where a tether is moved in a concave environment. The distance between the tether and the environment is computed as the tether’s location and three-dimensional profile change with time.

This content is only available via PDF.
You do not currently have access to this content.