This work deals with a numerical and experimental investigation on the effect of the reeling installation process on the collapse pressure of API X steel pipes. A three-dimensional nonlinear finite element model was first developed to simulate the bending and straightening process as it occurs during installation. The model is then used to determine the collapse pressures of both intact and plastically strained pipes. In addition, experimental tests on full-scale models were carried out in order to calibrate the numerical model. Pipe specimens are bent on a rigid circular die and then straightened with the aid of a custom-made test facility. Subsequently, the specimens are tested quasi-statically under external pressure until collapse in a pressure vessel. Unreeled specimens were also tested to complete the database for calibrating the numerical model. The numerical model is finally used to generate collapse envelopes of reeled and unreeled pipes with different geometry and material.

This content is only available via PDF.
You do not currently have access to this content.