This paper presents the results of a two-body analysis for a moored ship sheltered by a breakwater in shallow water with and without free surface forcing in the low frequency wave load calculation. The low frequency wave loads are determined by second order interactions from the first order. The free surface forcing term arises from the free surface boundary condition, which is trivial to first order but is not at second order. We demonstrate in the frequency domain the importance of this term in a two-body analysis. Additionally, we show how inaccurate calculations of the off-diagonal terms of the Quadratic Transfer Function can translate to over or under prediction of low frequency wave loads on moored ships sheltered by breakwaters in shallow water. Low frequency wave load accuracy has direct consequence for LNG marine terminal design. Generally, LNG marine terminals are sited in sheltered harbors, however increasingly they are being proposed in offshore locations where they will require protection from persistent waves and swells. Since breakwaters typically cost twice as much as the rest of the marine facilities, it is important to optimize their size, orientation and location. In a previous paper we described this optimization process [1], which identified a key step to be the transforming of waves just offshore the breakwater into wave loads on the moored ships. The ability to do this step accurately is of critical importance because if the loads are too large, the breakwater will be larger and more expensive than necessary and if the loads are too small, the terminal will experience excessive downtime and loss of revenue.

This content is only available via PDF.
You do not currently have access to this content.