While drilling extended reach wells, the weight per foot of the drill string is a critical design parameter that can limit the depth to be reached. One practical solution is the use of drill pipes made of alternative materials to the conventional steel drill pipes. The most direct options are titanium and aluminum. Titanium is in general impaired due to its high cost, although the titanium alloy Ti-6Al4V has already been used in the airplane industry. More recently, Russia has been manufacturing drill pipes using aluminum alloys of the system Al-Cu-Mg, similar to alloys 2024, also used in airplanes. These pipes present a reasonable commercial cost. Drill pipe fatigue damage occurs under cyclic loading conditions due to, for instance, rotation in curved sections of the well. Failures caused by crack nucleation and propagation are one of the highest risks to the structural integrity of these pipes. Usually, failure mechanisms develop in the transition region of the tool joint. Several mechanical and metallurgical factors affect the fatigue life of drill pipes. The former are mainly geometric discontinuities such as transition zones, pits and slip marks. The latter are related to the size and distribution of crystalline grains, phases and second phase particles (inclusions). In this study, the roles played by both factors in the fatigue life of drill pipes are studied through an experimental test program. The fundamental fatigue mechanisms are investigated via laboratory tests in small-scale coupons performed in an opto-mechanical fatigue apparatus. Additionally, full-scale fatigue testes on three aluminum drill pipes were performed. The pipes tested are being used in the horizontal section of some extended reach wells in the Northeast of Brazil.

This content is only available via PDF.
You do not currently have access to this content.