The steel catenary riser was adopted by Petrobras as a cost-effective alternative for oil and gas export and for water injection lines on deepwater fields, where large diameter flexible risers present technical and economic limitations. The installation of the P-18 SCR was a pioneer project of a free-hanging steel catenary riser linked to a semi-submersible [1] and demonstrated the technical feasibility of the concept. Fatigue damage verification is an important issue in SCR design, demanding a high number of loading cases to be analyzed. The random time domain nonlinear analysis is considered an attractive and reliable tool for fatigue analysis as nonlinearities are properly modeled and the random behaviour of environmental loadings is considered. As time domain analysis is high computer time consuming, the frequency domain analysis has been considered as an alternative tool for the initial phases of riser design to be used mainly for fatigue damage verification. This paper presents a methodology developed to perform a linearized frequency domain analysis aiming at fatigue damage verification. Two drilling risers were analyzed with the frequency domain procedure developed. The model of a steel lazy-wave riser was analyzed both in frequency and time domain in order to compare fatigue damage results. The analyses were performed using the Petrobras’s in-house computer codes ANFLEX, ALFREQ and POSFAL developed and implemented as part of projects from CENPES/PETROBRAS with “COPPE/UFRJ -The Engineering Post-Graduating Coordination of the Federal University of Rio de Janeiro”.

This content is only available via PDF.
You do not currently have access to this content.