In recent years there has been a worldwide increase in the pressure to develop sources of renewable energy. The UK government is committed to ensuring that ten percent of UK energy consumption will be supplied by renewables by the year 2010. Central to this commitment is the need to develop wind farms particularly in the offshore environment. Moving offshore will allow very large wind turbines capable of supplying 2 MW (first generation) to 5 MW (second generation) of power to be installed in large farms consisting of up to fifty or more turbines. In contrast to typical oil and gas structures the foundation may account for up to forty percent of the projected installed cost. The weight of each structure is very low, so the applied vertical load on the foundation will be small compared to the moment load derived from the wind and waves. Further, it will be necessary to have a single design that can be mass-produced over each site rather than have each foundation individually engineered. In combination these points lead to a very interesting engineering problem where the design of the foundation becomes crucial to the economics of the project. One solution is to use conventional piling. However, at some sites it may prove more economical to use shallow foundations, and, in particular suction installed skirted foundations [1]. It will be necessary to develop an adequate design framework for these no vel foundations under the relevant combinations of load so that the optimum structural configuration can be achieved. At Oxford University a program of research on skirted foundations has been underway for the last five years, and much progress has been made on the understanding of this type of foundation under combined loading. This progress has been in both experimental and theoretical areas. This paper explores various structural options that might be used for the wind turbine application. These different options lead to different loading conditions on the foundations. Experiments investigating these different loading conditions are explored. A theoretical approach that describes the experimental results in a way that can be implemented in typical structural analyses programs is outlined. Finally details of a major research program into developing the necessary design guidelines for foundations for offshore wind turbines is described.

This content is only available via PDF.
You do not currently have access to this content.