Cathodic polarisation may cause hydrogen absorption and embrittlement of titanium alloys. There is no need to protect titanium in seawater, but polarisation is inevitable when titanium components are connected to steel that is cathodically protected. The risk of hydrogen embrittlement of risers and other heavily loaded components rouse a need to quantify the amount of hydrogen that titanium alloys may absorb as a function of alloy composition, polarisation potential, temperature, cold working and time. The test program included Ti-3Al-2.5V and Ti-6Al-4V alloys that are candidate materials for risers. The hydrogen uptake was measured over a 3 years period in natural seawater. The results show that titanium absorbs hydrogen when it is polarised to potentials less than −0.8V vs. Ag/AgCl in seawater, but the absorption rate decreased with time. The maximum hydrogen loading measured after three years exposure at −1.04 V vs. Ag/AgCl was 150 ppm. A calcareous deposit built up on all surfaces and limited the hydrogen evolution and thereby the hydrogen uptake. Ti-3Al-2.5V alloys picked up less hydrogen than Ti-6Al-4V alloys, and palladium or ruthenium enhanced hydrogen uptake to some extent. Welding or cold working did not influence hydrogen uptake of the alloys included in the tests. Temperature had little effect, and thermal gradients in the titanium materials had no measurable influence. The effect of hydrogen on the mechanical properties of the alloys was not studied in detail in these experiments, but most specimens were tensioned C-rings with permanent strain. Neither of these developed cracks or other signs of embrittlement during the tests.
Skip Nav Destination
ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering
June 23–28, 2002
Oslo, Norway
Conference Sponsors:
- Ocean, Offshore, and Arctic Engineering Division
ISBN:
0-7918-3613-4
PROCEEDINGS PAPER
Hydrogen Absorption in Cathodically Polarized Titanium Alloys
Marion Seiersten,
Marion Seiersten
Institute of Energy Technology, Kjeller, Norway
Search for other works by this author on:
Tor Gunnar Eggen,
Tor Gunnar Eggen
SINTEF, Trondheim, Norway
Search for other works by this author on:
Liv Lunde,
Liv Lunde
Institute of Energy Technology, Kjeller, Norway
Search for other works by this author on:
Trond Rogne
Trond Rogne
SINTEF, Trondheim, Norway
Search for other works by this author on:
Marion Seiersten
Institute of Energy Technology, Kjeller, Norway
Tor Gunnar Eggen
SINTEF, Trondheim, Norway
Liv Lunde
Institute of Energy Technology, Kjeller, Norway
Trond Rogne
SINTEF, Trondheim, Norway
Paper No:
OMAE2002-28580, pp. 493-498; 6 pages
Published Online:
February 24, 2009
Citation
Seiersten, M, Eggen, TG, Lunde, L, & Rogne, T. "Hydrogen Absorption in Cathodically Polarized Titanium Alloys." Proceedings of the ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. 21st International Conference on Offshore Mechanics and Arctic Engineering, Volume 3. Oslo, Norway. June 23–28, 2002. pp. 493-498. ASME. https://doi.org/10.1115/OMAE2002-28580
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
Titanium Drilling Risers—Application and Qualification
J. Offshore Mech. Arct. Eng (February,2000)
Combined Effect of Temper and Hydrogen Embrittlement on Threshold for Hydrogen-Induced Fracture in Cr-Mo Steels
J. Pressure Vessel Technol (April,2013)
Experimental and Molecular Dynamics Simulation-Based Investigations on Hydrogen Embrittlement Behavior of Chromium Electroplated 4340 Steel
J. Eng. Mater. Technol (October,2021)
Related Chapters
Hydrogen Embrittlement of a Low Alloyed Steel in High Pressure Wet Hydrogen
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions
A 3D Cohesive Modelling Approach for Hydrogen Embrittlement in Welded Joints of X70 Pipeline Steel
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions
Hydrogen Embrittlement-Related Issues and Needs in the Hydrogen Value Chain
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions