This paper proposes a Load and Resistance Factors Design (LRFD) code format for structural components of offshore structures under multiple load effects. This code format accounts for the long-term variation of seastate and the actual correlation between dynamic load effects due to environmental actions. Ultimate limit states are formulated in terms of an Interaction Ratio (IR) random variable, such that the long-term extreme value of IR greater than unity means component failure. The long-term distribution of IR is obtained by combining the distribution of each short-term seastate. The short-term response of the generally nonlinear IR is determined by time domain simulation, taking into account partial load and resistance factors. The IR short-term distribution may be fitted, for instance, by using Rayleigh or Weibull distribution. The main advantages of the proposed code format are: • This code format accounts implicitly and correctly for the actual correlation among all dynamic environmental load processes. • Structural designers have used interaction ratios for a long time. Hence, it is straightforward to evolve from a deterministic stage of looking for IR < 1, as in old Working Stress Design codes, to a code format where the aim is to design structural components with long term IR extreme value < 1. The feasibility of the proposed code format is demonstrated by calibrating partial factors for beam-column cylindrical members based on components of a Floating Production System Semi-submersible hull.

This content is only available via PDF.
You do not currently have access to this content.