The aim of this paper is to provide some results from an investigation on available simplified formulations for ultimate strength analysis of the gull girder and the possibility of extending these methods in order to couple with reliability computations. This particular study is based on an analytical method proposed by Paik and Mansour. The procedure is enhanced to include structural reliability analysis of FPSOs based on probabilistic approach where uncertainties for both capacity and loading of the structure are taken into account. The estimation of the Ultimate longitudinal capacity and the probability of failure of the FPSO are carried out by dividing the cross section of the hull girder into beam column elements considering the different loads acting on the hull. The limit state function is formulated considering the loads acting on the hull girder and ultimate capacity. The ultimate capacity of the hull is taken as a function of variety of random variable (e.g. area of cross section and yield stresses of the different ship components, etc). The loads acting on the hull girder, both still water and wave induced are calculated using IACS and DNV rules and margins are provided to take care of the long-term deployment of FPSO at sea. Some results from the sensitivity analysis are also provided which has been carried out to study the influence of several factors on the structural reliability of the ship under extreme wave induced bending moment loads.

This content is only available via PDF.
You do not currently have access to this content.