The design and manufacturing cost of substructures is a major component of the total expenditure for a floating wind project. Applying optimization techniques to hull shape designs has become an effective way to reduce the life-cycle cost of a floating wind system. The mooring system is regarded as the component with the highest risk, mainly due to the poor accessibility. This paper extends the previous work by investigating the influences of the mooring design on the optimization process of a semisubmersible substructure. Two optimization loops are set up. In the first loop, only the main dimensions of a semi-submersible platform are parameterized without considering mooring lines (keep a constant mooring design). Nevertheless, the second loop introduces additional variables of the mooring lines. The objective is to minimize the tower-top displacement, fairlead fatigue damage, which are calculated by the in-house nonlinear dynamic simulation code SLOW, and the manufacturing cost of platform and mooring lines. The multi-objective optimization algorithm NSGA-II is employed to search for the optimal designs within the defined design space. The design space and the Pareto fronts are compared between the two optimizations. It is found that, although the mooring design does not have a significant impact on the platform design space, one obtains a different optimal set (Pareto front) if the mooring design and mooring loads are introduced into the platform optimization process. The results of this study are expected to give a better understanding in the relationship between platform and mooring design and serve as a basis for the optimization process of semi-submersible floating wind turbines.

This content is only available via PDF.
You do not currently have access to this content.