This paper describes a fully coupled numerical simulation methodology which is tailored towards floating offshore wind turbines. The technique assembles three key components; an aerodynamic model of the applied wind loads based on blade element momentum theory, a structural model of the floating platform and its associated mooring lines based on the nonlinear finite element method, and a hydrodynamic model of the wave-induced forces based on potential flow theory. The simulation methodology has been implemented in a commercial software product called ‘Flexcom Wind’, and the technical validation involves comparisons with experimental data derived from model-scale tank test facilities.

The validation process centres on an innovative floating wind turbine concept developed by Eolink. Unlike most wind turbines in industry which are supported by a single mast, this patented design uses four separate pillars to connect the turbine structure to the corners of the floating platform. This unique configuration offers several advantages over conventional designs, including a more even stress distribution in structural members, reduced dynamic vibration, smaller floater size and lower overall capital expenditure. Data obtained from the numerical simulations combined with the empirical tests is helping to optimise the device, with a view to further improving its structural design and performance.

This content is only available via PDF.
You do not currently have access to this content.