Fixed-bottom offshore wind turbines (OWTs) are typically located in shallow to intermediate water depth, where waves are likely to break. Support structure designs for such turbines must account for loads due to breaking waves, but predictions from breaking wave models often disagree with each other and with observed behavior. This variability indicates the need for a better understanding of each model’s strengths and limitations, especially for different ocean conditions. This work evaluates and improves the accuracy of common breaking wave criteria through comparison to Computational Fluid Dynamics (CFD) simulations of breaking waves. The simulated ocean conditions are representative of potential U.S. East Coast offshore wind energy development sites, but the discussion of model accuracy and limitations can be applied to any location with similar ocean conditions. The waves are simulated using CONVERGE, a commercial CFD software that uses a Volume of Fluid (VOF) approach and includes adaptive mesh refinement at the evolving air-water interface. First, the CFD model is validated against experimental data for shoaling and breaking wave surface elevations. Second, 2D simulations of breaking waves are compared to widely-used breaking wave limits (McCowan, Miche, and Goda) for different combinations of wave height, wavelength, water depth, and seafloor slope. Based on these comparisons, the accuracy and limitations of each breaking limit model are discussed. General usage guidelines are then recommended.

This content is only available via PDF.
You do not currently have access to this content.