Skip Nav Destination
Proceedings Papers
Volume 8: Ocean Renewable Energy
Front Matter
Ocean Renewable Energy
Current and Tidal Energy
Fatigue Life Evaluation of a Tidal Turbine Blade: From Simulations Using BEMT/FEM and CFD/FEM Couplings to Full-Scale Test
Stéphane Paboeuf, Meryem Guisser, Sébastien Loubeyre, Peter Davies, Maël Arhant, Nicolas Dumergue, Erwann Nicolas
OMAE 2022; V008T09A002https://doi.org/10.1115/OMAE2022-79114
Topics:
Blades
,
Composite materials
,
Computational fluid dynamics
,
Couplings
,
Fatigue
,
Fatigue life
,
Finite element model
,
Simulation
,
Tidal turbines
Joint Extremes of Waves and Currents at Tidal Energy Sites in the English Channel
OMAE 2022; V008T09A003https://doi.org/10.1115/OMAE2022-79348
Topics:
Currents
,
Tides
,
Waves
,
Tidal turbines
,
Design
,
Resilience
,
Shorelines
,
Significant wave heights
,
Structural design
Flow-Induced Vibration Marine Current Energy Harvesting Using a Centrally-Pivoted Cylinder
OMAE 2022; V008T09A004https://doi.org/10.1115/OMAE2022-80245
Topics:
Cylinders
,
Energy harvesting
,
Flow-induced vibrations
,
Vortex-induced vibration
,
Design
,
Energy conversion
,
Augers
,
Buoyancy
,
Caissons
,
Cross-flow
Hybrids and Floating Solar Energy
Hydrogen and Energy Storage
Offshore Wind Energy
Effect of Protuberances at the Blade Trailing Edge of a Vertical Axis Wind Turbine
OMAE 2022; V008T09A016https://doi.org/10.1115/OMAE2022-78552
Topics:
Blades
,
Cross-flow
,
Rotors
,
Turbines
,
Vertical axis wind turbines
,
Chords (Trusses)
,
Wind tunnels
,
Flow (Dynamics)
,
Hydraulic turbines
,
Reynolds number
Analysis of a Hybrid Mooring System Concept for a Semi-Submersible Wind Turbine in Intermediate Water Depth Under Operational, Extreme, and Yaw Error Conditions
OMAE 2022; V008T09A017https://doi.org/10.1115/OMAE2022-78666
Topics:
Errors
,
Mooring
,
Semi-submersible offshore structures
,
Water
,
Wind turbines
,
Yaw
,
Wind
,
Surges
,
Tension
,
Waves
The Application of Semi-Analytical Diffraction Formulas to Predict Second-Order Dynamic Response of a TLP Floating Wind Turbine in Monochromatic Waves
OMAE 2022; V008T09A018https://doi.org/10.1115/OMAE2022-78673
Topics:
Diffraction
,
Dynamic response
,
Floating wind turbines
,
Tension-leg platforms
,
Waves
,
Strips
,
Design
,
Boundary element methods
,
Cylinders
,
Flow (Dynamics)
Conceptual Design of a Prestressed Concrete Spar Floater Supporting a 10 MW Offshore Wind Turbine
Wichuda Munbua, Muhammad S. Hasan, Edgard B. Malta, Rodolfo T. Gonçalves, Chikako Fujiyama, Koichi Maekawa
OMAE 2022; V008T09A020https://doi.org/10.1115/OMAE2022-78808
Topics:
Conceptual design
,
Concretes
,
Offshore wind turbines
,
Prestressed concrete
,
Spar platforms
,
Stability
LQR Optimal Control of Two-Rotor Wind Turbine Mounted on Spar-Type Floating Platform
OMAE 2022; V008T09A022https://doi.org/10.1115/OMAE2022-78877
Topics:
Optimal control
,
Rotors
,
Spar platforms
,
Wind turbines
,
Wing spars
,
Dynamic analysis
,
Stress
,
Yaw
,
Blades
,
Control equipment
Influence of Aerodynamic Loads on a Dual-Spar Floating Offshore Wind Farm With a Shared Line in Parked Conditions
OMAE 2022; V008T09A023https://doi.org/10.1115/OMAE2022-78929
Topics:
Ocean engineering
,
Spar platforms
,
Stress
,
Wind farms
,
Wing spars
,
Mooring
,
Waves
,
Wind
,
Wind turbines
,
Computer simulation
Simulation of VIM of an Offshore Floating Wind Turbine
OMAE 2022; V008T09A025https://doi.org/10.1115/OMAE2022-79006
Topics:
Floating wind turbines
,
Simulation
,
Stress
,
Vortex-induced vibration
A Three Degrees of Freedom Vibration Model for a Partially Installed Wind Turbine
OMAE 2022; V008T09A026https://doi.org/10.1115/OMAE2022-79081
Topics:
Degrees of freedom
,
Vibration
,
Wind turbines
,
Blades
,
Rotation
,
Rotors
,
Shapes
,
Center of mass
,
Delays
,
Dynamics (Mechanics)
FRyFAST : A Coupling Between FRyDoM and OpenFAST for the Simulation of Floating Offshore Wind Turbines With High Complexity Platforms
Camille Chauvigné, Lucas Letournel, François Rongère, Pierre-Yves Wuillaume, Natalia Castro Casas, Benjamin Maréchal, Sofien Kerkeni
OMAE 2022; V008T09A029https://doi.org/10.1115/OMAE2022-79155
A Statistical Model of Motion Maxima of Offshore Wind Turbine Components During Installation
OMAE 2022; V008T09A030https://doi.org/10.1115/OMAE2022-79203
Topics:
Offshore wind turbines
,
Blades
,
Waves
,
Oscillations
,
Wind velocity
,
Uncertainty
,
Wind
,
Deflection
,
Rotors
,
Sensors
Modelling Aerodynamics of a Floating Offshore Wind Turbine Using the Overset Mesh Solver In OpenFOAM
OMAE 2022; V008T09A031https://doi.org/10.1115/OMAE2022-79230
Topics:
Aerodynamics
,
Floating wind turbines
,
Modeling
,
Rotors
,
Hydrodynamics
,
Blades
,
Computational fluid dynamics
,
Control systems
,
Dynamic response
,
Fatigue life
Hydrodynamic Performance of an Innovative Semisubmersible Platform With Twin Wind Turbines
OMAE 2022; V008T09A032https://doi.org/10.1115/OMAE2022-79248
Topics:
Mooring
,
Semi-submersible offshore structures
,
Wind turbines
,
Seas
,
Shorelines
,
Water
,
Computer software
,
Damping
,
Design
,
Dynamics (Mechanics)
Probabilistic Assessment of the Effect of Bolt Pre-Load Loss Over Time in Offshore Wind Turbine Bolted Ring-Flanges Using a Gaussian Process Surrogate Model
OMAE 2022; V008T09A033https://doi.org/10.1115/OMAE2022-79265
Topics:
Flanges
,
Offshore wind turbines
,
Stress
,
Approximation
,
Design
,
Event history analysis
,
Fatigue limit
,
Maintenance
,
Reliability
,
Clearances (Engineering)
Investigating the Impact of Disruptive Events on the Fabrication and Installation Processes for a Floating Offshore Wind Farm
OMAE 2022; V008T09A036https://doi.org/10.1115/OMAE2022-79407
Topics:
Failure
,
Machinery
,
Manufacturing
,
Ocean engineering
,
Simulation
,
Wind farms
,
Maintenance
,
Turbines
,
Delays
,
Floating wind turbines
Sustainable Reuse of Decommissioned Jacket Platforms for Offshore Wind Energy Accounting for Accumulated Fatigue Damage
OMAE 2022; V008T09A040https://doi.org/10.1115/OMAE2022-79598
Topics:
Accounting
,
Fatigue damage
,
Ocean engineering
,
Sustainability
,
Wind energy
,
Optimization
,
Wind turbines
,
Carbon
,
Climate change
,
Construction
FMI-Based Co-Simulation of Low-Height Lifting System for Offshore Wind Turbine Installation
OMAE 2022; V008T09A045https://doi.org/10.1115/OMAE2022-79844
Topics:
Offshore wind turbines
,
Simulation
,
Buoys
,
Complex systems
,
Floating wind turbines
,
Innovation
,
Ocean engineering
,
Parametrization
,
Wind farms
,
Wind turbines
Double Braid Mooring Damper for Floating Offshore Wind Application
OMAE 2022; V008T09A046https://doi.org/10.1115/OMAE2022-79855
Topics:
Braid (Textile)
,
Dampers
,
Mooring
,
Ocean engineering
,
Wind
,
Stiffness
,
Design
,
Stress
,
Testing
,
Floating wind turbines
Development of a Modular, Adaptable and Scalable Gravity Anchor System for Various Floating Foundations
OMAE 2022; V008T09A048https://doi.org/10.1115/OMAE2022-79916
Topics:
Floating structures
,
Gravity (Force)
,
Manufacturing
,
Seabed
,
Water
,
Wind
,
Bearings
,
Boats
,
Design
,
Floating wind turbines
Mooring System Design for Floating Offshore Wind Turbine Working in Intermediate Water
OMAE 2022; V008T09A053https://doi.org/10.1115/OMAE2022-80593
Topics:
Buoys
,
Design
,
Floating wind turbines
,
Mooring
,
Water
Dynamic Analysis of Blade Mating Process Using Jack-Up Crane Vessel: A Code-to-Code Comparison
OMAE 2022; V008T09A054https://doi.org/10.1115/OMAE2022-80701
Topics:
Blades
,
Crane barges
,
Dynamic analysis
,
Jack-up drilling rigs
,
Stress
,
Computer software
,
Damage
,
Dynamic response
,
Modal analysis
,
Offshore wind turbines
Structural Load Estimation of Downstream Wind Turbines in an Offshore Wind Farm
Yiqing Xia, Yosuke Matsumoto, Iman Yousefi, Kazuyoshi Oouchi, Shunsuke Kaneko, Michio Nittouji, Kenji Fujii, Kaho Machida
OMAE 2022; V008T09A055https://doi.org/10.1115/OMAE2022-80883
Topics:
Ocean engineering
,
Stress
,
Wind farms
,
Wind turbines
,
Wind
,
Turbines
,
Blades
,
Fatigue
,
Offshore wind turbines
,
Rotors
A Comparison of Approaches for Modelling Walk-to-Work Gangway Access
OMAE 2022; V008T09A056https://doi.org/10.1115/OMAE2022-80926
Topics:
Modeling
,
Waves
,
Vessels
,
Ocean engineering
,
Wind farms
,
Computer simulation
,
Design
,
Maintenance
,
Turbines
,
Wind turbines
Model Test and Validation of the Crown Floating Offshore Wind Turbine
Wei Yu, Frank Lemmer, Katja Lehmann, Po Wen Cheng, Santiago de Guzmán, Jaime Moreu, Tommaso Battistella
OMAE 2022; V008T09A059https://doi.org/10.1115/OMAE2022-81065
Topics:
Floating wind turbines
,
Waves
,
Dynamic response
,
Control systems
,
Dampers
,
Hardware
,
Spar platforms
,
Testing
,
Thrust
,
Turbines
Validation Study of a CFD Numerical Solver for the Oscillatory Flow Features Around Heave Plates
OMAE 2022; V008T09A060https://doi.org/10.1115/OMAE2022-81116
Topics:
Computational fluid dynamics
,
Flow (Dynamics)
,
Plates (structures)
,
Stress
,
Circular cylinders
,
Cylinders
,
Fluids
,
Modeling
,
Oscillations
,
Particulate matter
Preliminary Investigation of a Shared Mooring Arrangement for a Floating Offshore Wind Turbine Farm in Deep Water
OMAE 2022; V008T09A061https://doi.org/10.1115/OMAE2022-81245
Topics:
Floating wind turbines
,
Mooring
,
Water
,
Wind
,
Wind farms
,
Turbines
,
Displacement
,
Ocean engineering
,
Seabed
,
Stress
Identification of Wave Drift Forces on a Floating Wind Turbine Sub-Structure With Heave Plates and Comparison With Predictions
OMAE 2022; V008T09A063https://doi.org/10.1115/OMAE2022-81467
Topics:
Floating wind turbines
,
Plates (structures)
,
Wave drift forces
,
Wave drift
,
Flow (Dynamics)
,
Seas
,
Waves
,
Mooring
,
Oceans
,
Spectra (Spectroscopy)
Design Methodology Evolution: Transition From O&G FPU to FOWT
OMAE 2022; V008T09A064https://doi.org/10.1115/OMAE2022-81555
Topics:
Design methodology
,
Simulation
,
Stability
,
Wind
Wave Energy
A Novel Zero-Discharge Supercritical Water-Based Wave Energy Desalination System
Faete Filho, Gabriel Glosson, Jason McMorris, Tarek Abdel-Salam, Kurabachew Duba, Thanh Toan Tran, Salman Husain
OMAE 2022; V008T09A066https://doi.org/10.1115/OMAE2022-78191
Topics:
Reverse osmosis
,
Water
,
Water desalination
,
Wave energy
,
Wave energy converters
,
Waves
The Application of the Spectral Domain Modeling to the Techno-Economic Analysis of the Adjustable Draft Point Absorbers
OMAE 2022; V008T09A067https://doi.org/10.1115/OMAE2022-79119
Topics:
Economics
,
Modeling
,
Hydrostatics
,
Seas
,
Absorption
,
Energy generation
,
Engineering simulation
,
Simulation
,
Wave energy
,
Waves
Performance Modelling of Flap-Type Wave Energy Converter Array: Flaps With Various Dynamic Characteristics
OMAE 2022; V008T09A069https://doi.org/10.1115/OMAE2022-79869
Topics:
Modeling
,
Wave energy converters
,
Simulation
,
Waves
,
Computer simulation
,
Energy generation
,
Oscillations
,
Power converters
,
Shorelines
,
Wave frequency
Comprehensive Verification and Validation of a CFD Analysis
OMAE 2022; V008T09A072https://doi.org/10.1115/OMAE2022-80578
Topics:
Computational fluid dynamics
,
Cylinders
,
Damping
,
Wave energy converters
Experimental Investigation on a Speed Controlled Wells Turbine for Wave Energy Conversion
OMAE 2022; V008T09A077https://doi.org/10.1115/OMAE2022-80986
Topics:
Turbines
,
Wave energy
,
Wells
,
Air flow
,
Ocean waves
,
Blades
,
Energy conversion
,
Engineering simulation
,
Flow (Dynamics)
,
Oscillations
Energy-Maximising Control Philosophy for a Cyclorotor Wave Energy Device
OMAE 2022; V008T09A078https://doi.org/10.1115/OMAE2022-80990
Topics:
Control systems
,
Wave energy
,
Rotors
,
Wave energy converters
,
Waves
,
Wind turbines
,
Absorption
,
Actuators
,
Buoyancy
,
Engineers
Stochastic Response Determination of U-Oscillating Water Columns in Severe Seas by a Statistical Linearization Scheme
OMAE 2022; V008T09A080https://doi.org/10.1115/OMAE2022-81138
Topics:
Oscillations
,
Seas
,
Water
,
Excitation
,
Waves
,
Statistics
,
Breakwaters
,
Construction
,
Damping
,
Dynamics (Mechanics)
Accurate WEC Power Estimation for Multi-Modal Wave Spectra
OMAE 2022; V008T09A081https://doi.org/10.1115/OMAE2022-81155
Topics:
Spectra (Spectroscopy)
,
Waves
,
Seas
,
Energy generation
,
Simulation
,
Errors
,
Ocean engineering
,
Shapes
,
Wave energy converters
,
Wind
Wave Energy Converter Optimal Design Under Parameter Uncertainty
Filippo Giorcelli, Sergej Antonello Sirigu, Edoardo Pasta, Daniele Giovanni Gioia, Mauro Bonfanti, Giuliana Mattiazzo
OMAE 2022; V008T09A085https://doi.org/10.1115/OMAE2022-81464
Topics:
Design
,
Uncertainty
,
Wave energy converters
,
Optimization
,
Robustness
,
Wave motion
,
Oceans
,
Reliability
,
Seas
,
Wave energy
Influence on Structural Loading of a Wave Energy Converter by Controlling Variable-Geometry Components and the Power Take-Off
OMAE 2022; V008T09A087https://doi.org/10.1115/OMAE2022-81518
Topics:
Geometry
,
Wave energy converters
,
Stress
,
Waves
,
Hinges
,
Design
,
Damping
,
Failure
,
Oceans
,
Oscillations
Design and Optimization of a Point Absorber for the Mediterranean Sea
OMAE 2022; V008T09A088https://doi.org/10.1115/OMAE2022-81530
Topics:
Design
,
Optimization
,
Seas
,
Wave energy converters
Mitigating Force Oscillations in a Wave Energy Converter Using Control Barrier Functions
OMAE 2022; V008T09A089https://doi.org/10.1115/OMAE2022-82707
Topics:
Oscillations
,
Wave energy converters
,
Safety
,
Feedback
,
Actuators
,
Autonomous vehicles
,
Computer simulation
,
Control equipment
,
Design
,
Generators