Skip Nav Destination
Proceedings Papers
Volume 9: Ocean Renewable Energy
Ocean Renewable Energy
Current and Tidal Energy
Investigations Into Tidal Current Turbine System Faults and Fault Tolerant Control Strategies
OMAE 2020; V009T09A001https://doi.org/10.1115/OMAE2020-18221
Topics:
Robustness
,
Tides
,
Turbines
,
Sensors
,
Control systems
,
Electric power generation
,
Energy generation
,
Generators
,
Matlab
,
Ocean energy
Numerical Model of a Vertical-Axis Cross-Flow Tidal Turbine
OMAE 2020; V009T09A003https://doi.org/10.1115/OMAE2020-18514
Topics:
Actuators
,
Computer simulation
,
Cross-flow
,
Tidal turbines
,
Tides
,
Turbines
,
Computational fluid dynamics
,
Rotors
,
Flow (Dynamics)
,
Hydropower
Tidal Turbine Load Variability in Following and Opposing Irregular Wave Conditions
OMAE 2020; V009T09A004https://doi.org/10.1115/OMAE2020-18701
Topics:
Stress
,
Tidal turbines
,
Waves
,
Design
,
Flow (Dynamics)
,
Risk
,
Significant wave heights
,
Turbines
Torque Control of a Laboratory Scale Variable Speed Hydrokinetic Tidal Turbine: CFD Simulation and Validation
OMAE 2020; V009T09A005https://doi.org/10.1115/OMAE2020-18830
Topics:
Computational fluid dynamics
,
Simulation
,
Tidal turbines
,
Torque control
,
Control systems
,
Flow (Dynamics)
,
Turbines
,
Energy generation
,
Tides
,
Torque
Energy Harvesting From the Tidal Currents Using a Mangrove-Like System
OMAE 2020; V009T09A006https://doi.org/10.1115/OMAE2020-18894
Topics:
Currents
,
Energy harvesting
,
Kinematics
,
Tides
,
Vortex-induced vibration
Combined Wave-Current-Turbulent Flow Environments Generation for Tidal Turbine Design
OMAE 2020; V009T09A007https://doi.org/10.1115/OMAE2020-19109
Topics:
Design
,
Flow (Dynamics)
,
Tidal turbines
,
Turbulence
,
Waves
Hydrokinetic Energy Conversion by Flow-Induced Oscillation of Two Tandem-Cylinders of Different Stiffness
OMAE 2020; V009T09A008https://doi.org/10.1115/OMAE2020-19120
Topics:
Cylinders
,
Flow (Dynamics)
,
Hydropower
,
Oscillations
,
Stiffness
,
Vortex-induced vibration
,
Damping
,
Inflow
,
Ocean currents
,
Renewable energy
Modelling Wave-Current-Turbulence Interactions for Tidal Energy Applications
OMAE 2020; V009T09A009https://doi.org/10.1115/OMAE2020-19298
Topics:
Kinetic energy
,
Modeling
,
Tides
,
Turbulence
,
Waves
Enabling Technology and Project Development
Offshore Wind-Powered Oil and Gas Fields: A Preliminary Investigation of the Techno-Economic Viability for the Offshore Rio de Janeiro, Brazil
Milad Shadman, Segen F. Estefen, Kleber Nunes, Mojtaba Maali Amiri, Luiz Filipe Tavares, Priscilla Rangel, Luiz Paulo Assad
OMAE 2020; V009T09A010https://doi.org/10.1115/OMAE2020-19148
Topics:
Natural gas fields
,
Ocean engineering
,
Wind power
Wave Energy
Investigation of a Novel Wave Energy Generator Using Dielectric Elastomer
OMAE 2020; V009T09A012https://doi.org/10.1115/OMAE2020-18106
Topics:
Elastomers
,
Generators
,
Mooring
,
Wave energy
Nonlinear Time-Domain Simulation of the Heaving-Buoy Type Wave Energy Converter by Using Three-Dimensional Potential Numerical Wave Tank Under Irregular Wave Conditions
OMAE 2020; V009T09A014https://doi.org/10.1115/OMAE2020-18392
Topics:
Buoys
,
Simulation
,
Wave energy converters
,
Waves
,
Damping
,
Accounting
,
Boundary element methods
,
Computer simulation
,
Coulombs
,
Generators
Motion Decay Simulations of a Moored Wave Energy Converter
OMAE 2020; V009T09A015https://doi.org/10.1115/OMAE2020-18424
Topics:
Damping
,
Engineering simulation
,
Mooring
,
Simulation
,
Wave energy converters
A Nonlinear Dual Phase Numerical Model to Investigate the Efficiency Response of Varied OWC Chamber Geometries
OMAE 2020; V009T09A017https://doi.org/10.1115/OMAE2020-18440
Topics:
Computer simulation
,
Oscillations
,
Water
,
Geometry
,
Shapes
,
Waves
,
Computer software
,
Engineering simulation
,
Pressure
,
Simulation
Possibilities for a Novel Wave Power Generator Using Dielectric Elastomers
OMAE 2020; V009T09A018https://doi.org/10.1115/OMAE2020-18464
Topics:
Elastomers
,
Generators
,
Renewable energy
,
Wave energy
Nonlinear Analysis of an Oscillating Wave Surge Converter in Frequency Domain via Statistical Linearization
Leandro S. P. da Silva, Nataliia Y. Sergiienko, Benjamin S. Cazzolato, Boyin Ding, Celso P. Pesce, Helio M. Morishita
OMAE 2020; V009T09A019https://doi.org/10.1115/OMAE2020-18510
Topics:
Oscillations
,
Surges
,
Waves
,
Torque
,
Engineering simulation
,
Simulation
,
Absorption
,
Computation
,
Computer simulation
,
Coulombs
Dynamic Response of a Wave Energy Converter With Resonant U-Tank
OMAE 2020; V009T09A020https://doi.org/10.1115/OMAE2020-18553
Topics:
Dynamic response
,
Resonance
,
Wave energy converters
,
Waves
Loads on a Point-Absorber Wave Energy Converter in Regular and Focused Extreme Wave Events
OMAE 2020; V009T09A022https://doi.org/10.1115/OMAE2020-18639
Topics:
Stress
,
Wave energy converters
,
Waves
,
Dynamics (Mechanics)
,
Buoys
,
Modeling
,
Wave energy
,
Computational fluid dynamics
,
Computer software
,
Design
Experimental Assessment of the IFPEN Solution to the WEC Control Competition
OMAE 2020; V009T09A023https://doi.org/10.1115/OMAE2020-18669
Topics:
Actuators
,
Algorithms
,
Control equipment
,
Design
,
Excitation
,
Noise (Sound)
,
Quadratic programming
,
Seas
,
Simulation
,
Teams
Experimental Investigation on a Point Absorber Moored by Taut Mooring System and Mooring Fatigue Analysis
OMAE 2020; V009T09A025https://doi.org/10.1115/OMAE2020-18819
Topics:
Fatigue analysis
,
Mooring
,
Fatigue damage
,
Waves
,
Seas
,
Wire
,
Damping
,
Dynamics (Mechanics)
,
Ropes
,
Springs
Experimental Study the Performance of a Compact Mooring System for a Dual Chamber Floating Oscillating Water Column Device
OMAE 2020; V009T09A026https://doi.org/10.1115/OMAE2020-18839
Topics:
Mooring
,
Oscillations
,
Water
,
Waves
,
Wave energy converters
,
Degrees of freedom
,
Buoys
,
Damping
,
Elevations (Drawings)
,
Energy conversion
Umbilical Fatigue Analysis for a Wave Energy Converter
OMAE 2020; V009T09A028https://doi.org/10.1115/OMAE2020-18879
Topics:
Fatigue analysis
,
Wave energy converters
Investigating the Impact of Power-Take-Off System Parameters and Control Law on a Rotational Wave Energy Converter’s Peak-to-Average Power Ratio Reduction
OMAE 2020; V009T09A029https://doi.org/10.1115/OMAE2020-18961
Topics:
Control algorithms
,
Engines
,
Gears
,
Generators
,
Geometry
,
Hardware
,
Inertia (Mechanics)
,
Mechanical drives
,
Motors
,
Resonance
Numerical Model Development of a Variable-Geometry Attenuator Wave Energy Converter
OMAE 2020; V009T09A031https://doi.org/10.1115/OMAE2020-19054
Topics:
Computer simulation
,
Geometry
,
Wave energy converters
,
Seas
,
Cylinders
,
Design
,
Energy generation
,
Steel
,
Wave energy
,
Buoyancy
Blowing the Top on Parametric Resonance: Relief Valve Control for the Stabilisation of an OWC Spar Buoy
OMAE 2020; V009T09A033https://doi.org/10.1115/OMAE2020-19128
Topics:
Buoys
,
Relief valves
,
Resonance
,
Spar platforms
,
Wing spars
,
Waves
,
Dynamics (Mechanics)
,
Flumes
,
Oscillations
,
Pressure
Optimization of Both the Layout of an Array and the Buoy Dimension for Two Types of Arrays
OMAE 2020; V009T09A035https://doi.org/10.1115/OMAE2020-19155
Topics:
Buoys
,
Dimensions
,
Optimization
,
Design
,
Hydrodynamics
,
Oceans
,
Q-factor
,
Simulation
,
Wave energy converters
Genetic Optimization of Shape and Control of Non-Linear Wave Energy Converters
OMAE 2020; V009T09A036https://doi.org/10.1115/OMAE2020-19156
Topics:
Nonlinear waves
,
Optimization
,
Power converters
,
Shapes
,
Buoys
,
Control equipment
,
Damping
,
Design
,
Energy harvesting
,
Excitation
Development and Validation of Passive Yaw in the Open-Source WEC-Sim Code
OMAE 2020; V009T09A038https://doi.org/10.1115/OMAE2020-19255
Topics:
Yaw
,
Excitation
,
Waves
,
Computation
,
Boundary element methods
,
Displacement
,
Interpolation
,
Algorithms
,
Matlab
,
Modeling
Design Optimisation of a Multi-Mode Wave Energy Converter
OMAE 2020; V009T09A039https://doi.org/10.1115/OMAE2020-19266
Topics:
Design
,
Optimization
,
Wave energy converters
,
Buoys
,
Renewable energy
,
Waves
,
Climate
,
Damping
,
Drag (Fluid dynamics)
,
Dynamics (Mechanics)
Wind Energy
Numerical Analysis of Aeroelastic Responses of Wind Turbine Under Uniform Inflow
OMAE 2020; V009T09A041https://doi.org/10.1115/OMAE2020-18084
Topics:
Inflow
,
Numerical analysis
,
Wind turbines
,
Blades
,
Deformation
,
Wakes
,
Actuators
,
Degrees of freedom
,
Engineering simulation
,
Finite element analysis
Numerical Study of Yawed Wind Turbine Under Unstable Atmospheric Boundary Layer Flows
OMAE 2020; V009T09A042https://doi.org/10.1115/OMAE2020-18087
Topics:
Boundary layers
,
Flow (Dynamics)
,
Wind turbines
,
Turbines
,
Wakes
,
Yaw
,
Deflection
,
Energy generation
,
Stability
,
Turbulence
Leading Edge Erosion of Wind Turbine Blades: Effects of Environmental Parameters on Impact Velocities and Erosion Damage Rate
OMAE 2020; V009T09A043https://doi.org/10.1115/OMAE2020-18173
Topics:
Blades
,
Damage
,
Erosion
,
Wind turbines
,
Stress
,
Rotating blades
,
Turbulence
,
Drops
,
Fatigue
,
Modeling
Numerical Prototyping of Floating Offshore Wind Turbines: Virtual Operation in Real Environmental Conditions
OMAE 2020; V009T09A044https://doi.org/10.1115/OMAE2020-18174
Topics:
Floating wind turbines
,
Wind
,
Seas
,
Stress
,
Wind waves
,
Design
,
Waves
,
Engineering prototypes
,
Fatigue analysis
,
Tension-leg platforms
Analysis of a FOWT Model in Bichromatic Waves: An Investigation on the Effect of Combined Wave-Frequency and Slow Motions on the Calibration of Drag and Inertial Force Coefficients
Lucas H. S. do Carmo, Pedro C. de Mello, Edgard B. Malta, Guilherme R. Franzini, Alexandre N. Simos, Rodolfo T. Gonçalves, Hideyuki Suzuki
OMAE 2020; V009T09A047https://doi.org/10.1115/OMAE2020-18239
Topics:
Calibration
,
Drag (Fluid dynamics)
,
Wave frequency
,
Waves
,
Flow (Dynamics)
,
Cylinders
,
Hull
,
Oscillations
,
Case studies
,
Computation
Study on the Consideration Method of Damage Stability Criteria Corresponding to IEC 61400-3-2 for Floating Offshore Wind Turbine
Toshiki Chujo, Ken Haneda, Yusuke Komoriyama, Kentaroh Kokubun, Yasuhira Yamada, Toshifumi Fujiwara, Shunji Inoue
OMAE 2020; V009T09A048https://doi.org/10.1115/OMAE2020-18252
Topics:
Collisions (Physics)
,
Damage
,
Floating wind turbines
,
Ships
,
Stability
Dynamic Load Analysis of the Tower Structure of a Floating Wind Turbine Under Random Wind and Wave Excitation by Detuning Blade Pitch Controller Proportional Gains
OMAE 2020; V009T09A056https://doi.org/10.1115/OMAE2020-18405
Topics:
Blades
,
Control equipment
,
Excitation
,
Floating wind turbines
,
Stress
,
Waves
,
Wind
Modeling of a Shared Mooring System for a Dual-Spar Configuration
OMAE 2020; V009T09A057https://doi.org/10.1115/OMAE2020-18467
Topics:
Modeling
,
Mooring
,
Spar platforms
,
Wing spars
,
Floating wind turbines
,
Simulation
,
Cable structures
,
Design
,
Wind farms
Application of Structural Monitoring Data for Fatigue Life Predictions of Monopile-Supported Offshore Wind Turbines
OMAE 2020; V009T09A058https://doi.org/10.1115/OMAE2020-18516
Topics:
Fatigue life
,
Offshore wind turbines
,
Wind
,
Uncertainty
,
Fatigue
,
Turbines
,
Fatigue damage
,
Safety
,
Stress
,
Computation
State Estimator for Floating Offshore Wind Turbines and Performance Evaluation
OMAE 2020; V009T09A059https://doi.org/10.1115/OMAE2020-18549
Topics:
Floating wind turbines
,
Performance evaluation
,
Turbines
,
Blades
,
Wind turbines
,
Computers
,
Control equipment
,
Design
,
Failure
,
Fault diagnosis
On the Correlation Between Floating Wind Turbine Accelerations, Rotor and Tower Loads
OMAE 2020; V009T09A060https://doi.org/10.1115/OMAE2020-18610
Topics:
Design
,
Floating wind turbines
,
Rotors
,
Stress
Scale Effects in Heave Plates: PIV Investigation
Elena Anglada-Revenga, Ana Bezunartea-Barrio, Adolfo Maron-Loureiro, Enrique Molinelli-Fernandez, Julio Oria-Escudero, Leandro Saavedra-Ynocente, Cristina Soriano-Gomez, Daniel Duque-Campayo, Jesus Gomez-Goni, Antonio Souto-Iglesias
OMAE 2020; V009T09A061https://doi.org/10.1115/OMAE2020-18679
Methodology for Mitigation of Armour Wire Bird Caging in Offshore Wind Export Cables
OMAE 2020; V009T09A064https://doi.org/10.1115/OMAE2020-18772
Topics:
Armor
,
Cables
,
Ocean engineering
,
Wind
,
Wire
Evaluation of a Hybrid Representation to Model the Wind Turbine, Platform and Mooring Lines in the Analysis of Floating Offshore Wind Turbines
Elói Daniel de Araújo Neto, William Steven Mendez Rodriguez, Fabricio Nogueira Correa, Beatriz de Souza Leite Pires de Lima, Breno Pinheiro Jacob, Arturo Ortega
OMAE 2020; V009T09A066https://doi.org/10.1115/OMAE2020-18889
Topics:
Floating wind turbines
,
Mooring
,
Wind turbines
,
Blades
,
Design
,
Elasticity
,
Finite element analysis
,
Finite element model
,
Hull
,
Pipeline risers
Accelerated Hydrodynamic Analysis for Spar Buoys With Second-Order Wave Excitation
OMAE 2020; V009T09A067https://doi.org/10.1115/OMAE2020-18910
Topics:
Buoys
,
Excitation
,
Spar platforms
,
Waves
,
Wing spars
,
Stress
,
Seas
,
Computer simulation
,
Design
,
Resonance
High-Fidelity Modelling of Floating Offshore Wind Turbine Platforms
OMAE 2020; V009T09A068https://doi.org/10.1115/OMAE2020-18913
Topics:
Computational fluid dynamics
,
Damping
,
Floating wind turbines
,
Modeling
,
Mooring
,
Turbulence
Relative Motion During Single Blade Installation: Measurements From the North Sea
Aljoscha Sander, Andreas F. Haselsteiner, Kader Barat, Michael Janssen, Stephan Oelker, Jan-Hendrik Ohlendorf, Klaus-Dieter Thoben
OMAE 2020; V009T09A069https://doi.org/10.1115/OMAE2020-18935
Topics:
Blades
,
North Sea
,
Stress
,
Turbines
,
Waves
,
Excitation
,
Ocean engineering
,
Significant wave heights
,
Wind
,
Wind farms
Experimental Identification of an Advanced Spar’s Low Frequency Drag Damping in Waves
OMAE 2020; V009T09A072https://doi.org/10.1115/OMAE2020-19020
Topics:
Damping
,
Drag (Fluid dynamics)
,
Waves
,
Hull
,
Renewable energy
,
Water
,
Wind
,
Climate change
,
Engineering simulation
,
Floating bodies
Virtual Prototyping of a Low-Height Lifting System for Offshore Wind Turbine Installation
OMAE 2020; V009T09A074https://doi.org/10.1115/OMAE2020-19166
Topics:
Offshore wind turbines
,
Ocean engineering
,
Wind turbines
,
Cranes
,
Design
,
Dimensions
,
Wire
,
Blades
,
Computer software
,
Jack-up drilling rigs
MoorDyn V2: New Capabilities in Mooring System Components and Load Cases
OMAE 2020; V009T09A078https://doi.org/10.1115/OMAE2020-19341
Topics:
Mooring
,
Stress
,
Failure
,
Buoyancy
,
Design
,
Dynamics (Mechanics)
,
Elasticity
,
Failure mechanisms
,
Floating wind turbines
,
Hydrodynamics
Email alerts
Most Read Proceedings Papers in OMAE
OMAE2024 Front Matter
OMAE2024
OMAE2024 Front Matter
OMAE2024