Skip Nav Destination
Proceedings Papers
In This Volume
Volume 10: Ocean Renewable Energy
Ocean Renewable Energy
Current Energy — Analysis, Design and Operation
Maximum Wave Load Cycles on Submerged Rotating Tidal Energy Turbines: Identification of Worst Case Scenarios
OMAE 2017; V010T09A002https://doi.org/10.1115/OMAE2017-61569
Topics:
Cycles
,
Stress
,
Tidal turbines
,
Waves
,
Rotors
,
Turbines
,
Blades
,
Vibration
,
Design
,
Ocean engineering
Adaptive Composites for Load Control in Marine Turbine Blades
Ramona B. Barber, Craig S. Hill, Pavel F. Babuska, Alberto Aliseda, Richard Wiebe, Michael R. Motley
OMAE 2017; V010T09A003https://doi.org/10.1115/OMAE2017-62068
Topics:
Composite materials
,
Stress
,
Turbine blades
,
Blades
,
Turbines
,
Design
,
Fiber reinforced plastics
,
Flumes
,
Hydraulic turbines
,
Alloys
Two Tandem Cylinders With Passive Turbulence Control in Flow Induced Vibration: Relation of Oscillation Patterns to Frequency Response
OMAE 2017; V010T09A004https://doi.org/10.1115/OMAE2017-62131
Topics:
Cylinders
,
Flow-induced vibrations
,
Frequency response
,
Oscillations
,
Turbulence
,
Flow (Dynamics)
,
Spectra (Spectroscopy)
,
Currents
,
Hydropower
,
Oceans
Interactive Flow-Induced Vibrations of Two Staggered, Low Mass-Ratio Cylinders in the TrSL3 Flow Regime (2.5×104<Re<1.2×105): Smooth Cylinders
OMAE 2017; V010T09A005https://doi.org/10.1115/OMAE2017-62166
Topics:
Cylinders
,
Flow (Dynamics)
,
Flow-induced vibrations
,
Springs
,
Vibration
,
Circular cylinders
,
Dampers
,
Damping
,
Displacement
,
Fluid-dynamic forces
Ocean Renewable Energy — Regulatory and Environmental Considerations
Ocean Renewable Energy — Thermal, Hybrid and Other Forms
Real-Time Hybrid Model (ReaTHM®) Testing of the Hybrid Power Plant: Concept and Feasibility Test
OMAE 2017; V010T09A010https://doi.org/10.1115/OMAE2017-61042
Topics:
Hybrid power systems
,
Testing
,
Power stations
,
Stress
,
Actuators
,
Delays
,
Diesel
,
Diesel engines
,
Errors
,
Ships
Emission Reduction in Shipping Using Hydrogen and Fuel Cells
OMAE 2017; V010T09A011https://doi.org/10.1115/OMAE2017-61401
Topics:
Emissions
,
Fuel cells
,
Hydrogen
,
Fuels
,
Regulations
,
Vessels
,
Water
,
Renewable energy
,
Combustion
,
Electrolysis
Nonlinear Droop Load Sharing to Minimize Gas Emissions and Fuel Consumption
OMAE 2017; V010T09A012https://doi.org/10.1115/OMAE2017-61752
Topics:
Emissions
,
Fuel consumption
,
Stress
,
Engines
,
Fuel oils
,
Generators
The Principle of an Integrated Generation Unit for Offshore Wind Power and Ocean Wave Energy
OMAE 2017; V010T09A013https://doi.org/10.1115/OMAE2017-62223
Topics:
Ocean engineering
,
Wave energy
,
Wind power
,
Wind
,
Rotors
,
Blades
,
Degrees of freedom
,
Energy conversion
,
Energy resources
,
Generators
Wave Energy — Analysis and Experimentation
Wave Energy Conversion Efficiency of the Dual Cylindrical Caisson Breakwaters Embodying an OWC With a Semi-Arc Inlet on Outer Wall
OMAE 2017; V010T09A014https://doi.org/10.1115/OMAE2017-61029
Topics:
Breakwaters
,
Caissons
,
Exterior walls
,
Wave energy
,
Water
,
Cylinders
,
Waves
,
Nozzles
,
Oscillations
,
Sands
Performance Assessment of the Anaconda WEC in Regular Waves at 1:50 Model Scale
OMAE 2017; V010T09A016https://doi.org/10.1115/OMAE2017-61478
Topics:
Waves
,
Pressure
,
Water
,
Air flow
,
Compressibility
,
Engineering prototypes
,
Ocean waves
,
Orifices
,
Oscillations
,
Pneumatic systems
Development of Control Strategies for Interconnected Pneumatic Wave Energy Converters
Eric Thacher, Helen Bailey, Bryson Robertson, Scott Beatty, Jason Goldsworthy, Curran Crawford, Bradley Buckham
OMAE 2017; V010T09A018https://doi.org/10.1115/OMAE2017-61537
Topics:
Wave energy converters
,
Computer simulation
,
Optimization
,
Seas
,
Waves
,
Architecture
,
Degrees of freedom
,
Energy generation
,
Force control
,
Genetic algorithms
The First Full Operative U-OWC Plants in the Port of Civitavecchia
OMAE 2017; V010T09A022https://doi.org/10.1115/OMAE2017-62036
Topics:
Ducts
,
Engineering prototypes
,
Resonance
,
Seas
,
Theoretical analysis
,
Turbines
,
Vacuum gages
,
Water
,
Wave energy converters
,
Waves
Structural Loads Analysis for Wave Energy Converters
OMAE 2017; V010T09A023https://doi.org/10.1115/OMAE2017-62139
Wave Energy Prize Experimental Sea State Selection
OMAE 2017; V010T09A025https://doi.org/10.1115/OMAE2017-62675
Topics:
Seas
,
Wave energy
,
Climate
,
Testing
,
Electromagnetic scattering
,
Shorelines
,
Waves
Wave Energy — Design and Optimization
Constraints Implementation in the Application of Reinforcement Learning to the Reactive Control of a Point Absorber
OMAE 2017; V010T09A026https://doi.org/10.1115/OMAE2017-61294
Topics:
Algorithms
,
Control equipment
,
Damping
,
Displacement
,
Engineering simulation
,
Seas
,
Simulation
,
Stiffness
,
Teaching
,
Wave energy converters
Experimental Study on Dynamic Control of Oscillation Characteristics of a Spar-Buoy
OMAE 2017; V010T09A028https://doi.org/10.1115/OMAE2017-61612
Topics:
Buoys
,
Oscillations
,
Spar platforms
,
Wing spars
,
Cylinders
,
Buoyancy
,
Computer simulation
,
Screws
An Assessment of WEC Control Performance Uncertainty
OMAE 2017; V010T09A030https://doi.org/10.1115/OMAE2017-61912
Topics:
Uncertainty
,
Control equipment
,
Dynamic models
,
Design
,
Engineering simulation
,
Predictive control
,
Seas
,
Shorelines
,
Simulation
,
Testing
WEC Geometry Optimization With Advanced Control
OMAE 2017; V010T09A031https://doi.org/10.1115/OMAE2017-61917
Topics:
Geometry
,
Optimization
,
Boundary element methods
,
Design
,
Buoys
,
Dynamic models
,
Genetic algorithms
,
Seas
,
Shapes
,
Wave energy converters
Analysis of a Wave-Powered, Reverse-Osmosis System and its Economic Availability in the United States
OMAE 2017; V010T09A032https://doi.org/10.1115/OMAE2017-62136
Topics:
Reverse osmosis
,
Waves
,
Water
,
Computer simulation
,
Diffraction
,
Diffusion (Physics)
,
Flow (Dynamics)
,
High pressure (Physics)
,
Membranes
,
Pumps
Conceptual Design and Analysis of a Submerged Wave Energy Device in Shallow Water
OMAE 2017; V010T09A033https://doi.org/10.1115/OMAE2017-62174
Topics:
Conceptual design
,
Water
,
Wave energy
,
Oscillations
,
Waves
,
Damping
,
Fluids
,
Rails
,
Springs
,
Flat plates
A New Class of Wave Energy Converter: The Floating Pendulum Dynamic Vibration Absorber
Hayden Marcollo, Jonathan Gumley, Paul Sincock, Nicholas Boustead, Adrian Eassom, Genevieve Beck, Andrew E. Potts
OMAE 2017; V010T09A034https://doi.org/10.1115/OMAE2017-62220
Topics:
Pendulums
,
Vibration absorbers
,
Wave energy converters
,
Computer simulation
,
Calibration
,
Control systems
,
Design
,
Floating bodies
,
Mooring
,
Patents
Development of a Novel Floater to Power Take-Off Connection for Wave Energy Converters Based on a Belt-Pulley System
OMAE 2017; V010T09A036https://doi.org/10.1115/OMAE2017-62589
Topics:
Belts
,
Pulleys
,
Wave energy converters
,
Design
,
Energy transformation
,
Generators
,
Optimization
,
Power stations
,
Renewable energy
,
Ropes
A Comparison of Biradial and Wells Air Turbines on the Mutriku Breakwater OWC Wave Power Plant
OMAE 2017; V010T09A037https://doi.org/10.1115/OMAE2017-62651
Topics:
Breakwaters
,
Turbines
,
Wave energy
,
Wells
,
Guide vanes
,
Rotors
,
Computer simulation
,
Computer software
,
Disks
,
Ducts
Wind Energy — Analysis and Operation
Investigation on High-Order Coupled Rigid-Flexible Multi-Body Dynamic Code for Offshore Floating Wind Turbines
OMAE 2017; V010T09A039https://doi.org/10.1115/OMAE2017-61074
Topics:
Blades
,
Equations of motion
,
Floating wind turbines
,
Flow (Dynamics)
,
Kinematics
,
Momentum
,
Mooring
,
Offshore wind turbines
,
Simulation
,
Stress
Development of a Simulation Tool Coupling Hydrodynamics and Unsteady Aerodynamics to Study Floating Wind Turbines
OMAE 2017; V010T09A040https://doi.org/10.1115/OMAE2017-61203
Topics:
Aerodynamics
,
Floating wind turbines
,
Hydrodynamics
,
Simulation
,
Wakes
,
Rotors
,
Blades
,
Boundary element methods
,
Horizontal axis wind turbines
,
Inflow
A Fast and Practical Method for Predicting the Fatigue Life of Offshore Wind Turbine Jacket Support Structures
OMAE 2017; V010T09A043https://doi.org/10.1115/OMAE2017-61339
Topics:
Fatigue life
,
Offshore wind turbines
,
Waves
,
Wind
,
Fatigue
,
Fatigue damage
,
Stress
,
Cycles
,
Design
,
Emission spectroscopy
Elastic Deformations of Floaters for Offshore Wind Turbines: Dynamic Modelling and Sectional Load Calculations
OMAE 2017; V010T09A044https://doi.org/10.1115/OMAE2017-61446
Topics:
Deformation
,
Dynamic modeling
,
Offshore wind turbines
,
Stress
,
Wind turbines
,
Simulation
,
Waves
,
Diffraction
,
Excitation
,
Radiation (Physics)
Design of an Offshore Three-Bladed Vertical Axis Wind Turbine for Wind Tunnel Experiments
OMAE 2017; V010T09A046https://doi.org/10.1115/OMAE2017-61512
Topics:
Design
,
Ocean engineering
,
Vertical axis wind turbines
,
Wind tunnels
,
Wind energy
,
Airfoils
,
Blades
,
Chords (Trusses)
,
Turbines
,
Engineering simulation
On the Adequacy of Existing Foundation Schemes for Offshore Wind Turbines Subjected to Extreme Loading
OMAE 2017; V010T09A047https://doi.org/10.1115/OMAE2017-61525
Topics:
Offshore wind turbines
,
Caissons
,
Stress
,
Suction
,
Deformation
,
Earthquakes
,
Ocean engineering
,
Reliability
,
Safety
,
Seas
Modelling the Dynamic Response and Loads of Floating Offshore Wind Turbine Structures With Integrated Compressed Air Energy Storage
OMAE 2017; V010T09A049https://doi.org/10.1115/OMAE2017-61587
Topics:
Compressed air
,
Dynamic response
,
Energy storage
,
Modeling
,
Offshore wind turbines
,
Stress
,
Tension-leg platforms
,
Wind turbines
,
Weight (Mass)
,
Buoyancy
Wind Farm Modeling in a Realistic Environment Using a Multiscale Approach
OMAE 2017; V010T09A051https://doi.org/10.1115/OMAE2017-61686
Topics:
Modeling
,
Wind farms
,
Microscale devices
,
Meteorology
,
Resolution (Optics)
,
Actuators
,
Boundary-value problems
,
Kinetic energy
,
Ocean waves
,
Satellites
Calibration of Long-Term Time-Domain Load Generation for Fatigue Life Assessment of Offshore Wind Turbine
OMAE 2017; V010T09A053https://doi.org/10.1115/OMAE2017-61747
Topics:
Calibration
,
Fatigue life
,
Offshore wind turbines
,
Stress
,
Wind
,
Wind turbines
,
Fatigue damage
,
Waves
,
Boundary element methods
,
Computation
A Formulation for the Unsteady Aerodynamics of Floating Wind Turbines, With Focus on the Global System Dynamics
OMAE 2017; V010T09A055https://doi.org/10.1115/OMAE2017-61925
Topics:
Aerodynamics
,
Floating wind turbines
,
System dynamics
,
Offshore wind turbines
,
Rotors
,
Surges
,
Thrust
,
Torque
,
Wakes
,
Wind tunnels
Low Cycle Fatigue Analysis of Offshore Wind Turbines Subjected to Hurricane
OMAE 2017; V010T09A056https://doi.org/10.1115/OMAE2017-62039
Topics:
Low cycle fatigue
,
Offshore wind turbines
,
Wind
,
Turbulence
,
Wind turbines
,
Blades
,
Damage
,
Waves
,
Aerodynamics
,
Fatigue
Efficient Algorithm for Discretization of Metocean Data Into Clusters of Arbitrary Size and Dimension
OMAE 2017; V010T09A057https://doi.org/10.1115/OMAE2017-62077
Topics:
Algorithms
,
Dimensions
,
Waves
,
Wind
,
Engineers
,
Fatigue analysis
,
Floating structures
,
Laptop computers
,
Oceans
,
Offshore wind turbines
Study on Influence of Vortex Induced Loads on the Motion of Spar-Type Wind Turbine Based on Aero-Hydro-Vortex-Mooring Coupled Model
OMAE 2017; V010T09A058https://doi.org/10.1115/OMAE2017-62620
Topics:
Mooring
,
Spar platforms
,
Stress
,
Vortices
,
Wind turbines
,
Wing spars
,
Blades
,
Computational fluid dynamics
,
Momentum
,
Potential theory (Physics)
Wind Energy — Design and Simulations
Bottom Supported Tension Leg Tower for Offshore Wind Turbines
OMAE 2017; V010T09A059https://doi.org/10.1115/OMAE2017-61009
Topics:
Offshore wind turbines
,
Tension
,
Water
,
Gravity (Force)
,
Ocean engineering
,
Turbines
,
Wind
,
Concretes
,
Density
,
Energy generation
A New Type of Collapsible Wing Sail and its Aerodynamic Performance
OMAE 2017; V010T09A060https://doi.org/10.1115/OMAE2017-61084
Topics:
Wings
,
Ships
,
Computational fluid dynamics
,
Emissions
,
Propulsion
,
Renewable energy
,
Safety
,
Vessels
,
Wind
,
Computer simulation
The Effect of Turbulence Model on the Response of a Large Floating Wind Turbine
OMAE 2017; V010T09A062https://doi.org/10.1115/OMAE2017-61179
Topics:
Floating wind turbines
,
Turbulence
,
Engineering simulation
,
Simulation
,
Mooring
,
Stress
,
Surges
,
Wind velocity
,
Fatigue damage
,
Tension
Comparing Different Approaches for Calculating Wave Impacts on a Monopile Turbine Foundation
OMAE 2017; V010T09A063https://doi.org/10.1115/OMAE2017-61182
Topics:
Turbines
,
Waves
,
Stress
,
Kinematics
,
Offshore wind turbines
,
Seabed
,
Seas
Simulation of Wave Impacts at Belwind Offshore Wind Farm and Comparison With Full-Scale Measurements
OMAE 2017; V010T09A064https://doi.org/10.1115/OMAE2017-61305
Topics:
Ocean engineering
,
Simulation
,
Waves
,
Wind farms
,
Wind turbines
,
Computational fluid dynamics
,
Stress
,
Computer simulation
,
Turbines
,
Excitation
Preliminary Design of a Wind Driven Vessel Dedicated to Hydrogen Production
OMAE 2017; V010T09A065https://doi.org/10.1115/OMAE2017-61408
Topics:
Design
,
Hydrogen production
,
Vessels
,
Wind
,
Ships
,
Hydrogen
,
Rotors
,
Disks
,
Electrolysis
,
Electromagnetic induction
Joint Probability Distribution of Environmental Conditions for Design of Offshore Wind Turbines
OMAE 2017; V010T09A068https://doi.org/10.1115/OMAE2017-61451
Topics:
Design
,
Offshore wind turbines
,
Statistical distributions
,
Waves
,
Wind
,
Ocean engineering
,
Seas
,
Significant wave heights
,
Wind turbines
,
Wind velocity
Extreme Value Analyses of Dynamic Response Parameters of a Wind Tower Structure Under Short-Term Nonlinear Irregular Seastate
OMAE 2017; V010T09A069https://doi.org/10.1115/OMAE2017-61495
Topics:
Dynamic response
,
Wind
,
Waves
,
Fittings
,
Stress
,
Water
,
Blades
,
Drag (Fluid dynamics)
,
Dynamic analysis
,
Fluid-dynamic forces
Model Test and Simulation Comparison for an Inclined-Leg TLP Dedicated to Floating Wind
OMAE 2017; V010T09A070https://doi.org/10.1115/OMAE2017-61652
Topics:
Simulation
,
Tension-leg platforms
,
Wind
,
Wind turbines
,
Calibration
,
Mooring
,
Ocean engineering
,
Rotation
,
Thrust
,
Aerodynamics
Impact of New Slamming Wave Design Method on the Structural Dynamics of a Classic, Modern and Future Offshore Wind Turbine
OMAE 2017; V010T09A071https://doi.org/10.1115/OMAE2017-61654
Topics:
Design methodology
,
Offshore wind turbines
,
Structural dynamics
,
Waves
,
Stress
,
Engineering simulation
,
Simulation
,
Wind turbines
,
Wave packets
,
Design
An Optimization Method for the Configuration of Inter Array Cables for Floating Offshore Wind Farm
OMAE 2017; V010T09A072https://doi.org/10.1115/OMAE2017-61655
Topics:
Cables
,
Ocean engineering
,
Optimization
,
Wind farms
,
Simulation
,
Buoyancy
,
Compression
,
Computer software
,
Degrees of freedom
,
Elongation
Experimental and Numerical Statistics of Storm Wave Forces on a Monopile in Uni- and Multidirectional Seas
OMAE 2017; V010T09A073https://doi.org/10.1115/OMAE2017-61676
Topics:
Seas
,
Statistics
,
Storms
,
Wave forces
,
Waves
,
Spectra (Spectroscopy)
,
Dynamic response
,
Excitation
,
Filters
,
Kinematics
Dynamic Response of Floating Wind Turbine Under Consideration of Dynamic Behavior of Catenary Mooring-Lines
OMAE 2017; V010T09A074https://doi.org/10.1115/OMAE2017-61689
Topics:
Dynamic response
,
Floating wind turbines
,
Mooring
,
Spar platforms
,
Tension
,
Surges
,
Blades
,
Displacement
,
Ocean waves
,
Stress
Key Contributors to Lifetime Accumulated Fatigue Damage in an Offshore Wind Turbine Support Structure
OMAE 2017; V010T09A075https://doi.org/10.1115/OMAE2017-61708
Topics:
Fatigue damage
,
Offshore wind turbines
,
Stress
,
Waves
,
Actuators
,
Fatigue
,
Fluctuations (Physics)
,
Simulation
,
Time-domain analysis
,
Trains
Wind Tunnel 2-DoF Hybrid/HIL Tests on the OC5 Floating Offshore Wind Turbine
OMAE 2017; V010T09A076https://doi.org/10.1115/OMAE2017-61763
Topics:
Offshore wind turbines
,
Wind tunnels
,
Waves
,
Computation
,
Control systems
,
Degrees of freedom
,
Floating wind turbines
,
Hardware
,
Modeling
,
Oceans
Feasibility Study of the Floating Axis Wind Turbine: Preliminary Model Experiments
OMAE 2017; V010T09A079https://doi.org/10.1115/OMAE2017-61944
Topics:
Wind turbines
,
Turbines
,
Generators
,
Rollers
,
Spar platforms
,
Wing spars
,
Bearings
,
Buoys
,
Design
,
Offshore wind turbines
Optimization of Floating Offshore Wind Turbine Platforms With a Self-Tuning Controller
OMAE 2017; V010T09A080https://doi.org/10.1115/OMAE2017-62038
Topics:
Control equipment
,
Offshore wind turbines
,
Optimization
,
Design
,
Stress
,
Waves
,
Wind
,
Concretes
,
Dynamic response
,
Floating wind turbines
Summary of the Joint Industry Project Wave Impact on Fixed Foundations (WiFi JIP)
Erik Jan de Ridder, Tim Bunnik, Johan M. Peeringa, Bo Terp Paulsen, Christof Wehmeyer, Philipp Gujer, Erik Asp
OMAE 2017; V010T09A081https://doi.org/10.1115/OMAE2017-62040
Topics:
Waves
,
Computational fluid dynamics
,
Design
,
Engineering simulation
,
Seas
,
Simulation
,
Stress
,
Atlantic Ocean
,
Boats
,
Computation
Demonstration Test for Using Suction Anchor and Polyester Rope in Floating Offshore Wind Turbine
OMAE 2017; V010T09A082https://doi.org/10.1115/OMAE2017-62197
Topics:
Offshore wind turbines
,
Polyester fabrics
,
Ropes
,
Suction
,
Soil
,
Design methodology
,
Dimensions
,
Floating wind turbines
,
Mooring
,
Pressure
Dynamic Modelling of a Spar Buoy Wind Turbine
Giuseppe Roberto Tomasicchio, Alberto Maria Avossa, Luigia Riefolo, Francesco Ricciardelli, Elena Musci, Felice D’Alessandro, Diego Vicinanza
OMAE 2017; V010T09A083https://doi.org/10.1115/OMAE2017-62246
Topics:
Buoys
,
Dynamic modeling
,
Spar platforms
,
Wind turbines
,
Wing spars
,
Waves
,
Mooring
,
Computer simulation
,
Simulation
,
Wind
Pore Pressure Under a Gravity Based Structure Under the Influence of Waves
Erik Damgaard Christensen, Stefan Carstensen, Mikael Thyge Madsen, Peter Allerød Hesselbjerg, Christel Jeanty Nielsen
OMAE 2017; V010T09A085https://doi.org/10.1115/OMAE2017-62585
Topics:
Gravity (Force)
,
Pressure
,
Waves
,
Numerical analysis
,
Seabed
,
Stress
,
Computational fluid dynamics
,
Design
,
Erosion
,
Offshore wind turbines