Skip Nav Destination
Proceedings Papers
In This Volume
Volume 9: Ocean Renewable Energy
Ocean Renewable Energy
Competition on Hydrodynamic Modeling of a Rigid Body
Numerical Simulations for the Response of a Submerged Horizontal Cylinder Moored in Waves: COER Hydrodynamic Modeling Competition
OMAE 2015; V009T09A003https://doi.org/10.1115/OMAE2015-41752
Topics:
Computer simulation
,
Cylinders
,
Modeling
,
Mooring
,
Waves
,
Damping
,
Fluid-dynamic forces
,
Numerical analysis
,
Potential theory (Physics)
,
Simulation
Hydrodynamic Modelling Competition: Overview and Approaches
OMAE 2015; V009T09A004https://doi.org/10.1115/OMAE2015-42182
Topics:
Modeling
,
Cylinders
,
Waves
,
Damping
,
Drag (Fluid dynamics)
,
Excitation
,
Flow (Dynamics)
,
Fluids
,
Geometry
,
Navier-Stokes equations
COER Hydrodynamic Modeling Competition: Modeling the Dynamic Response of a Floating Body Using the WEC-Sim and FAST Simulation Tools
OMAE 2015; V009T09A005https://doi.org/10.1115/OMAE2015-42288
Topics:
Dynamic response
,
Floating bodies
,
Modeling
,
Simulation
,
Computer simulation
,
Numerical analysis
,
Ocean energy
,
Renewable energy
,
Waves
Comparison of Numerical Simulations With Experimental Measurements for the Response of a Modified Submerged Horizontal Cylinder Moored in Waves
OMAE 2015; V009T09A006https://doi.org/10.1115/OMAE2015-42325
Topics:
Computer simulation
,
Cylinders
,
Mooring
,
Waves
,
Design
,
Simulation
,
Defense industry
,
Oceans
,
Reliability
,
Renewable energy sources
Current Energy: Analysis Concepts and Developments
Numerical Model of Flow Field Around a Horizontal Axis Tidal Stream Turbine With a Mono-Pile Foundation
OMAE 2015; V009T09A007https://doi.org/10.1115/OMAE2015-41024
Topics:
Computer simulation
,
Flow (Dynamics)
,
Tidal turbines
,
Turbines
,
Construction
,
Fluids
,
Kinetic energy
,
Tides
,
Wakes
,
Water
Parameterization of a Multi-Directional Tidal Turbine Performance Using Computational Fluid Dynamics
OMAE 2015; V009T09A008https://doi.org/10.1115/OMAE2015-41035
Topics:
Computational fluid dynamics
,
Tidal turbines
,
Blades
,
Turbines
,
Flow (Dynamics)
,
Shapes
,
Turbine blades
,
Design
,
Geometry
,
Airfoils
Performance and Mooring Analysis of 10 KW Floating Duct-Type Tidal Current Power System
OMAE 2015; V009T09A011https://doi.org/10.1115/OMAE2015-41780
Topics:
Ducts
,
Mooring
,
Power systems (Machinery)
,
Tides
,
Flow (Dynamics)
,
Computational fluid dynamics
,
Ocean energy
,
Water
,
Computer software
,
Design
The Development of a Risk-Based Guideline for the Design of Current and Tidal Turbines
OMAE 2015; V009T09A012https://doi.org/10.1115/OMAE2015-41820
Topics:
Design
,
Risk
,
Tidal turbines
,
Tides
,
Seas
,
Engineering prototypes
,
Ocean engineering
,
Wind energy
,
Decision making
,
Maintenance
Partial Safety Factors and Design Fatigue Factors for Design Requirements of Tidal Turbines: A Risk Based Approach
OMAE 2015; V009T09A013https://doi.org/10.1115/OMAE2015-41985
Topics:
Design
,
Fatigue
,
Risk
,
Safety
,
Tidal turbines
,
Uncertainty
,
Stress
,
Inflow
,
Simulation
,
Structural failures
Wave-Current Interactions in a Marine Current Turbine Using ANSYS FLUENT CFD
OMAE 2015; V009T09A015https://doi.org/10.1115/OMAE2015-42133
Topics:
Computational fluid dynamics
,
Turbines
,
Waves
,
Water
,
Rotors
,
Thrust
,
Torque
,
Blades
,
Simulation
,
Fluids
Envelope of Power Harvested by a Single-Cylinder VIVACE Converter
OMAE 2015; V009T09A016https://doi.org/10.1115/OMAE2015-42333
Topics:
Cylinders
,
Vortex-induced vibration
,
Flow (Dynamics)
,
Reynolds number
,
Turbulence
,
Computer simulation
,
Currents
,
Damping
,
Engineering simulation
,
Hydropower
Wave Energy: Analysis Concepts and Development
Real Time Estimation and Prediction of Wave Excitation Forces on a Heaving Body
OMAE 2015; V009T09A017https://doi.org/10.1115/OMAE2015-41087
Topics:
Excitation
,
Waves
,
Climate
,
Filters
,
Kalman filters
,
Real-time control
,
Renewable energy
,
Shorelines
,
Water
,
Wave energy converters
A Vertical Axis Wave Turbine With Cup Blades
OMAE 2015; V009T09A018https://doi.org/10.1115/OMAE2015-41140
Topics:
Blades
,
Turbines
,
Waves
,
Rotors
,
Design
,
Rotation
,
Water
,
Flumes
,
Ocean waves
,
Reciprocating motion
Progresses in the Development of a Weakly-Nonlinear Wave Body Interaction Model Based on the Weak-Scatterer Approximation
Camille Chauvigné, Lucas Letournel, Aurélien Babarit, Guillaume Ducrozet, Pauline Bozonnet, Jean-Christophe Gilloteaux, Pierre Ferrant
OMAE 2015; V009T09A022https://doi.org/10.1115/OMAE2015-41971
Topics:
Approximation
,
Waves
,
Algorithms
,
Boundary element methods
,
Boundary-value problems
,
Diffraction
,
Energy conservation
,
Fluids
,
Geometry
,
Modeling
Analysis and Design of an Oscillating Water Column Wave Energy Converter With Dielectric Elastomer Power Take-Off
Giacomo Moretti, Gastone Pietro Papini Rosati, Marco Alves, Manuel Grases, Rocco Vertechy, Marco Fontana
OMAE 2015; V009T09A023https://doi.org/10.1115/OMAE2015-42103
Topics:
Design
,
Elastomers
,
Water
,
Wave energy converters
,
Diaphragms (Mechanical devices)
,
Diaphragms (Structural)
,
Generators
,
Stiffness
,
Waves
,
Capacitance
Wave Energy: Operations and Applications
Preliminary Wave Energy Converters Extreme Load Analysis
OMAE 2015; V009T09A026https://doi.org/10.1115/OMAE2015-41532
Topics:
Stress
,
Wave energy converters
,
Modeling
,
Design
,
Engineering simulation
,
Seas
,
Simulation
,
Computational fluid dynamics
,
Nonlinear waves
,
Renewable energy
Validation of the Index to Determine Design Parameters of a WEC for the Cost Optimization of a Wave Farm
OMAE 2015; V009T09A028https://doi.org/10.1115/OMAE2015-41908
Topics:
Design
,
Optimization
,
Waves
,
Errors
,
Profitability
,
Buoys
,
Construction
,
Energy conversion
,
Generators
,
Wave energy converters
Performance Assessment of a Floating Coaxial Ducted OWC Wave Energy Converter for Oceanographic Purposes
OMAE 2015; V009T09A029https://doi.org/10.1115/OMAE2015-41975
Topics:
Wave energy converters
,
Turbines
,
Buoys
,
Rotors
,
Seas
,
Sensors
,
Generators
,
Geometry
,
Inertia (Mechanics)
,
Sustainability
Numerical Modelling of Fixed Oscillating Water Column Wave Energy Conversion Devices: Toward Geometry Hydraulic Optimization
OMAE 2015; V009T09A031https://doi.org/10.1115/OMAE2015-42056
Topics:
Geometry
,
Modeling
,
Optimization
,
Water
,
Wave energy
,
Computational fluid dynamics
,
Diffusion (Physics)
,
Energy conversion
,
Fluids
,
Large eddy simulation
Development of PTO-Sim: A Power Performance Module for the Open-Source Wave Energy Converter Code WEC-Sim
OMAE 2015; V009T09A032https://doi.org/10.1115/OMAE2015-42074
Topics:
Wave energy converters
,
Boundary element methods
,
Waves
,
Damping
,
Dynamics (Mechanics)
,
Electricity (Physics)
,
Excitation
,
Geometry
,
Matlab
,
Modeling
Modelling of Sea Storms Associated With Energy Harvesters: Downtime and Energy Losses
OMAE 2015; V009T09A033https://doi.org/10.1115/OMAE2015-42178
Topics:
Downtime
,
Energy dissipation
,
Energy harvesting
,
Modeling
,
Seas
,
Storms
,
Design
,
Significant wave heights
,
Wave energy
,
Waves
Appraisal of the IEC Technical Specification for Assessment of Wave Energy Resources
OMAE 2015; V009T09A034https://doi.org/10.1115/OMAE2015-42198
Topics:
Wave energy
,
Waves
,
Buoys
,
Errors
,
Sensitivity analysis
,
Shorelines
,
Uncertainty
,
Water
Demonstration of the Recent Additions in Modeling Capabilities for the WEC-Sim Wave Energy Converter Design Tool
OMAE 2015; V009T09A035https://doi.org/10.1115/OMAE2015-42265
Topics:
Design
,
Modeling
,
Wave energy converters
,
Approximation
,
Boundary element methods
,
Damping
,
Floating bodies
,
Fluids
,
Inertia (Mechanics)
,
Matlab
Wave Carpet Optimization via Real Time Hybrid Modeling
OMAE 2015; V009T09A036https://doi.org/10.1115/OMAE2015-42365
Topics:
Modeling
,
Optimization
,
Waves
,
Wave energy converters
,
Absorption
,
Actuators
,
Design
,
Pressure
,
Real-time control
,
Sensors
Wind Energy: Analysis Concepts and Development
Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory
OMAE 2015; V009T09A038https://doi.org/10.1115/OMAE2015-41053
Topics:
Computation
,
Floating wind turbines
,
Fluids
,
Impulse (Physics)
,
Stress
,
Hydrodynamics
,
Computers
,
Diffraction
,
Floating bodies
,
Hydrostatics
Design Requirement of a Renewable Energy Plus Compressed Air Energy Storage and Regeneration System
OMAE 2015; V009T09A039https://doi.org/10.1115/OMAE2015-41240
Topics:
Compressed air
,
Design
,
Energy storage
,
Renewable energy
,
Ocean engineering
,
Fuels
,
Pumps
,
Diesel
,
Energy / power systems
,
Energy resources
Experimental and Numerical Studies of Axisymmetric Tuned Liquid Dampers
OMAE 2015; V009T09A041https://doi.org/10.1115/OMAE2015-41364
Topics:
Dampers
,
Damping
,
Earthquakes
,
Excitation
,
Structures
,
Wind
Preliminary Analysis About Coupled Response of Offshore Floating Wind Turbine System in Time Domain
OMAE 2015; V009T09A042https://doi.org/10.1115/OMAE2015-41369
Topics:
Floating wind turbines
,
Wind
,
Waves
,
Ocean engineering
,
Stress
,
Aerodynamics
,
Dynamic analysis
,
Engineering simulation
,
Hydrodynamics
,
Simulation
Control of an Open-Loop Hydraulic Offshore Wind Turbine Using a Variable-Area Orifice
OMAE 2015; V009T09A043https://doi.org/10.1115/OMAE2015-41388
Topics:
Offshore wind turbines
,
Nozzles
,
Turbines
,
Generators
,
Mechanical drives
,
Pipelines
,
Pumps
,
Seawater
,
Electric power transmission
,
Electronic components
Model Tests of a Spar-Type Floating Wind Turbine Under Wind/Wave Loads
OMAE 2015; V009T09A044https://doi.org/10.1115/OMAE2015-41391
Topics:
Floating wind turbines
,
Spar platforms
,
Stress
,
Wind waves
,
Wing spars
,
Wind turbines
,
Blades
,
Wind
,
Generators
,
Mooring
Rotor Scaling Methodologies for Small Scale Testing of Floating Wind Turbine Systems
OMAE 2015; V009T09A045https://doi.org/10.1115/OMAE2015-41599
Topics:
Floating wind turbines
,
Rotors
,
Testing
,
Design
,
Airfoils
,
Blades
,
Boundary element methods
,
Chords (Trusses)
,
Computer simulation
,
Genetic algorithms
Numerical Modelling of the Aerodynamic Characteristics of a Floating Offshore Wind Turbine Under Yawed Rotor Conditions
OMAE 2015; V009T09A046https://doi.org/10.1115/OMAE2015-41604
Topics:
Modeling
,
Offshore wind turbines
,
Rotors
,
Thrust
,
Tension-leg platforms
,
Wakes
,
Waves
,
Yaw
,
Floating wind turbines
,
Ocean waves
Comparison of Numerical Models and Verification Against Experimental Data, Using Pelastar TLP Concept
Luca Vita, G. K. V. Ramachandran, Antonia Krieger, Marit I. Kvittem, Daniel Merino, John Cross-Whiter, Benjamin B. Ackers
OMAE 2015; V009T09A047https://doi.org/10.1115/OMAE2015-41874
Topics:
Computer simulation
,
Tension-leg platforms
,
Waves
,
Aerodynamics
,
Design
,
Dynamics (Mechanics)
,
Hydrodynamics
,
Oceans
,
Stress
,
Wind turbines
Characterization of a Wind Tunnel for Use in Offshore Wind Turbine Development
James M. Newton, Matthew P. Cameron, Raul Urbina, Richard W. Kimball, Andrew J. Goupee, Krish P. Thiagarajan
OMAE 2015; V009T09A048https://doi.org/10.1115/OMAE2015-41979
Topics:
Offshore wind turbines
,
Wind tunnels
,
Turbines
,
Flow (Dynamics)
,
Wakes
,
Shear (Mechanics)
,
Turbulence
,
Honeycomb structures
,
Shapes
,
Testing
Deterministic Simulation of Breaking Wave Impact and Flexible Response of a Fixed Offshore Wind Turbine
OMAE 2015; V009T09A049https://doi.org/10.1115/OMAE2015-41989
Topics:
Offshore wind turbines
,
Simulation
,
Waves
,
Wind turbines
,
Computational fluid dynamics
,
Stress
,
Turbines
,
Computer simulation
,
Excitation
,
Calibration
Prediction of Extreme Tensions in Mooring Lines of a Floating Offshore Wind Turbine in a 100-Year Storm
OMAE 2015; V009T09A050https://doi.org/10.1115/OMAE2015-42015
Topics:
Mooring
,
Offshore wind turbines
,
Storms
,
Computer simulation
,
Tension
,
Computer software
,
Stress
,
Cycles
,
Wind turbines
,
Design
Hydrodynamic Modeling of Large-Diameter Bottom-Fixed Offshore Wind Turbines
OMAE 2015; V009T09A051https://doi.org/10.1115/OMAE2015-42028
Topics:
Modeling
,
Offshore wind turbines
,
Waves
,
Kinematics
,
Design
,
Diffraction
,
Stress
,
Accounting
,
Fatigue
,
Fatigue limit
Influence of the Rotor Characterization on the Motion of a Floating Wind Turbine
OMAE 2015; V009T09A053https://doi.org/10.1115/OMAE2015-42154
Topics:
Floating wind turbines
,
Rotors
,
Engineering instruments
,
Semi-submersible offshore structures
,
Stress
,
Waves
,
Wind
,
Airfoils
,
Control equipment
,
Damping
Wind Energy: Operations and Applications of Analyses
VolturnUS 1:8: Conclusion of 18-Months of Operation of the First Grid-Connected Floating Wind Turbine Prototype in the Americas
OMAE 2015; V009T09A055https://doi.org/10.1115/OMAE2015-41065
Topics:
Engineering prototypes
,
Floating wind turbines
,
Design
,
Seas
,
Concretes
,
Hull
,
Ocean engineering
,
Offshore wind turbines
,
Turbines
,
Wind
Met-Ocean Conditions Influence Over Floating Wind Turbine Energy Production
OMAE 2015; V009T09A056https://doi.org/10.1115/OMAE2015-41078
Topics:
Energy generation
,
Floating wind turbines
,
Oceans
,
Machinery
,
Safety
,
Wind turbines
,
Algorithms
,
Climate
,
Databases
,
Design
New Extreme Model Applied to Mooring System Design Load Case Assessment
OMAE 2015; V009T09A058https://doi.org/10.1115/OMAE2015-41130
Topics:
Design
,
Mooring
,
Stress
,
Ocean engineering
,
Uncertainty
,
Water
,
Wind farms
,
Engineering prototypes
,
North Sea
,
Shorelines
Hurricane Risk Considerations for Offshore Wind Turbines on the Atlantic Coast
OMAE 2015; V009T09A059https://doi.org/10.1115/OMAE2015-41157
Topics:
Atlantic Ocean
,
Offshore wind turbines
,
Risk
,
Shorelines
,
Waves
,
Wind
,
Design
,
Offshore structures
,
Buoys
,
Hazards
Comparison of Cyclic P-Y Methods for Offshore Wind Turbine Monopiles Subjected to Extreme Storm Loading
OMAE 2015; V009T09A060https://doi.org/10.1115/OMAE2015-41312
Topics:
Offshore wind turbines
,
Storms
,
Design
,
Stress
,
Soil
,
Cycles
,
Displacement
,
Earth resistance
,
Renewable energy
,
Rotation
New Semi-Submersible Floating Wind Turbine for South China Sea
OMAE 2015; V009T09A065https://doi.org/10.1115/OMAE2015-41666
Topics:
China
,
Floating wind turbines
,
Seas
,
Semi-submersible offshore structures
,
Wind
,
Design
,
Computer software
,
Mooring
,
Ocean engineering
,
Stress
Systematic Testing of the Fatigue Performance of Submerged Small-Scale Grouted Joints
OMAE 2015; V009T09A068https://doi.org/10.1115/OMAE2015-42000
Topics:
Fatigue
,
Testing
,
Stress
,
Fatigue testing
,
Ocean engineering
,
Water
,
Wind farms
,
Displacement
,
Governments
,
Mechanical properties
Evaluation of the Dynamic-Response-Based Intact Stability Criterion for Floating Wind Turbines
OMAE 2015; V009T09A069https://doi.org/10.1115/OMAE2015-42008
Topics:
Floating wind turbines
,
Stability
,
Wind
,
Dynamic response
,
Stress
,
Wind velocity
,
Design
,
Drilling
,
Energy generation
,
Offshore structures
Coupled Dynamic Analysis for Multi-Unit Floating Offshore Wind Turbine in Maximum Operational and Survival Conditions
OMAE 2015; V009T09A070https://doi.org/10.1115/OMAE2015-42062
Topics:
Dynamic analysis
,
Offshore wind turbines
,
Mooring
,
Stress
,
Turbines
,
Currents
,
Dynamics (Mechanics)
,
Rotors
,
Semi-submersible offshore structures
,
Turbulence
Effect of Pile-Soil Interaction on Structural Dynamics of Large MW Scale Offshore Wind Turbines in Shallow-Water Western GOM
OMAE 2015; V009T09A072https://doi.org/10.1115/OMAE2015-42320
Topics:
Offshore wind turbines
,
Soil
,
Structural dynamics
,
Water
,
Turbines
,
Blades
,
Rotors
,
Dynamics (Mechanics)
,
Gulf of Mexico
,
Ocean engineering